The Stacks project

Lemma 81.10.5. In Situation 81.2.1 let $X, Y/B$ be good. Let $f : X \to Y$ be a flat morphism of relative dimension $r$.

  1. Let $Z \subset Y$ be a closed subspace with $\dim _\delta (Z) \leq k$. Then we have $\dim _\delta (f^{-1}(Z)) \leq k + r$ and $[f^{-1}(Z)]_{k + r} = f^*[Z]_ k$ in $Z_{k + r}(X)$.

  2. Let $\mathcal{F}$ be a coherent sheaf on $Y$ with $\dim _\delta (\text{Supp}(\mathcal{F})) \leq k$. Then we have $\dim _\delta (\text{Supp}(f^*\mathcal{F})) \leq k + r$ and

    \[ f^*[{\mathcal F}]_ k = [f^*{\mathcal F}]_{k+r} \]

    in $Z_{k + r}(X)$.

Proof. Part (1) follows from part (2) by Lemma 81.6.3 and the fact that $f^*\mathcal{O}_ Z = \mathcal{O}_{f^{-1}(Z)}$.

Proof of (2). As $X$, $Y$ are locally Noetherian we may apply Cohomology of Spaces, Lemma 68.12.2 to see that $\mathcal{F}$ is of finite type, hence $f^*\mathcal{F}$ is of finite type (Modules on Sites, Lemma 18.23.4), hence $f^*\mathcal{F}$ is coherent (Cohomology of Spaces, Lemma 68.12.2 again). Thus the lemma makes sense. Let $W \subset Y$ be an integral closed subspace of $\delta $-dimension $k$, and let $W' \subset X$ be an integral closed subspace of dimension $k + r$ mapping into $W$ under $f$. We have to show that the coefficient $n$ of $[W']$ in $f^*[{\mathcal F}]_ k$ agrees with the coefficient $m$ of $[W']$ in $[f^*{\mathcal F}]_{k+r}$. We may choose a commutative diagram

\[ \xymatrix{ U \ar[d] \ar[r] & V \ar[d] \\ X \ar[r] & Y } \]

where $U, V$ are schemes, the vertical arrows are ├ętale, and there exist points $u \in U$, $v \in V$ such that $u \mapsto v$ and such that $u, v$ map to the generic points of $W', W$. (Details omitted.) Consider the stalk $M = (\mathcal{F}|_ V)_ v$ as an $\mathcal{O}_{V, v}$-module. (Note that $M$ has finite length by our dimension assumptions, but we actually do not need to verify this. See Lemma 81.4.4.) We have $(f^*\mathcal{F}|_ U)_ u = \mathcal{O}_{U, u} \otimes _{\mathcal{O}_{V, v}} M$. Thus we see that

\[ n = \text{length}_{\mathcal{O}_{U, u}} (\mathcal{O}_{U, u} \otimes _{\mathcal{O}_{V, v}} M) \quad \text{and} \quad m = \text{length}_{\mathcal{O}_{V, v}}(M) \text{length}_{\mathcal{O}_{V, v}}( \mathcal{O}_{U, u}/\mathfrak m_ v \mathcal{O}_{U, u}) \]

Thus the equality follows from Algebra, Lemma 10.52.13. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EPB. Beware of the difference between the letter 'O' and the digit '0'.