Lemma 42.5.4. Let $(A, \mathfrak m, \kappa ) \to (A', \mathfrak m', \kappa ')$ be a local homomorphism of Noetherian local rings. Assume $A \to A'$ is flat and $\dim (A) = \dim (A') = 1$. Set $m = \text{length}_{A'}(A'/\mathfrak mA')$. For $a_1, a_2 \in A$ nonzerodivisors $\partial _ A(a_1, a_2)^ m$ maps to $\partial _{A'}(a_1, a_2)$ via $\kappa \to \kappa '$.
Proof. If $a_1, a_2$ are both units, then $\partial _ A(a_1, a_2) = 1$ and $\partial _{A'}(a_1, a_2) = 1$ and the result is true. If not, then we can choose a ring extension $A \subset B$ and local factorizations as in Lemma 42.4.4. Denote $\mathfrak m_1, \ldots , \mathfrak m_ m$ be the maximal ideals of $B$. Let $\mathfrak m_1, \ldots , \mathfrak m_ m$ be the maximal ideals of $B$ with residue fields $\kappa _1, \ldots , \kappa _ m$. For each $j \in \{ 1, \ldots , m\} $ denote $\pi _ j \in B_ j = B_{\mathfrak m_ j}$ a nonzerodivisor such that we have factorizations $a_ i = u_{i, j}\pi _ j^{e_{i, j}}$ as in the lemma. By definition we have
where $m_ j = \text{length}_{B_ j}(B_ j/\pi _ j B_ j)$.
Set $B' = A' \otimes _ A B$. Since $A'$ is flat over $A$ we see that $A' \subset B'$ is a ring extension with $B'/A'$ annihilated by a power of $\mathfrak m'$. Let
be the maximal ideals of $B'$ lying over $\mathfrak m_ j$. Denote $\kappa '_{j, l}$ the residue field of $\mathfrak m'_{j, l}$. Denote $B'_{j, l}$ the localization of $B'$ at $\mathfrak m'_{j, l}$. As factorizations of $a_1$ and $a_2$ in $B'_{j, l}$ we use the image of the factorizations $a_ i = u_{i, j} \pi _ j^{e_{i, j}}$ given to us in $B_ j$. By definition we have
where $m'_{j, l} = \text{length}_{B'_{j, l}}(B'_{j, l}/\pi _ j B'_{j, l})$.
Comparing the formulae above we see that it suffices to show that for each $j$ and for any unit $u \in B_ j$ we have
in $\kappa '$. We are going to use the construction of determinants of endomorphisms of finite length modules in More on Algebra, Section 15.120 to prove this. Set $M = B_ j/\pi _ j B_ j$. By More on Algebra, Lemma 15.120.2 we have
Thus, by More on Algebra, Lemma 15.120.3, the left hand side of (42.5.4.1) is equal to $\det _{\kappa '}(u : M \otimes _ A A' \to M \otimes _ A A')$. We have an isomorphism
of $A'$-modules. Setting $M'_ l = B'_{j, l}/\pi _ j B'_{j, l}$ we see that $\text{Norm}_{\kappa '_{j, l}/\kappa '}(u \bmod \mathfrak m'_{j, l})^{m'_{j, l}} = \det _{\kappa '}(u_ j : M'_ l \to M'_ l)$ by More on Algebra, Lemma 15.120.2 again. Hence (42.5.4.1) holds by multiplicativity of the determinant construction, see More on Algebra, Lemma 15.120.1. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (3)
Comment #6809 by Johan on
Comment #6952 by Johan on
Comment #7056 by Johan on
There are also: