The Stacks project

Lemma 81.18.4. In Situation 81.2.1 let $X/B$ be good. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Let $Y \subset X$ be a closed subscheme with $\dim _\delta (Y) \leq k + 1$ and let $s \in \Gamma (Y, \mathcal{L}|_ Y)$ be a regular section. Then

\[ c_1(\mathcal{L}) \cap [Y]_{k + 1} = [Z(s)]_ k \]

in $\mathop{\mathrm{CH}}\nolimits _ k(X)$.

Proof. Write

\[ [Y]_{k + 1} = \sum n_ i[Y_ i] \]

where $Y_ i \subset Y$ are the irreducible components of $Y$ of $\delta $-dimension $k + 1$ and $n_ i > 0$. By assumption the restriction $s_ i = s|_{Y_ i} \in \Gamma (Y_ i, \mathcal{L}|_{Y_ i})$ is not zero, and hence is a regular section. By Lemma 81.17.2 we see that $[Z(s_ i)]_ k$ represents $c_1(\mathcal{L}|_{Y_ i})$. Hence by definition

\[ c_1(\mathcal{L}) \cap [Y]_{k + 1} = \sum n_ i[Z(s_ i)]_ k \]

Thus the result follows from Lemma 81.18.3. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EQN. Beware of the difference between the letter 'O' and the digit '0'.