The Stacks project

Lemma 38.34.6. An fppf covering is a h covering. Hence syntomic, smooth, ├ętale, and Zariski coverings are h coverings as well.

Proof. This is true because in an fppf covering the morphisms are required to be locally of finite presentation and because fppf coverings are ph covering, see More on Morphisms, Lemma 37.48.7. The second statement follows from the first and Topologies, Lemma 34.7.2. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0ETV. Beware of the difference between the letter 'O' and the digit '0'.