The Stacks project

Lemma 38.37.5. Let $X$ be a quasi-compact and quasi-separated scheme and let $Z \subset X$ be a closed subscheme cut out by a finite type quasi-coherent sheaf of ideals. Suppose given almost blow up squares (38.37.0.1)

\[ \xymatrix{ E_ k \ar[r] \ar[d] & X_ k' \ar[d] \\ Z \ar[r] & X } \]

for $k = 1, 2$, then there exists an almost blow up square

\[ \xymatrix{ E \ar[r] \ar[d] & X' \ar[d] \\ Z \ar[r] & X } \]

and closed immersions $i_ k : X' \to X'_ k$ over $X$ with $E = i_ k^{-1}(E_ k)$.

Proof. Denote $X'' \to X$ the blowing up of $Z$ in $X$. We view $X''$ as a closed subscheme of both $X'_1$ and $X'_2$. Write $X'' = \mathop{\mathrm{lim}}\nolimits X'_{1, i}$ as in Lemma 38.37.3. By Limits, Proposition 32.6.1 there exists an $i$ and a morphism $h : X'_{1, i} \to X'_2$ agreeing with the inclusions $X'' \subset X'_{1, i}$ and $X'' \subset X'_2$. By Limits, Lemma 32.4.20 the restriction of $h$ to $X'_{1, i'}$ is a closed immersion for some $i' \geq i$. This finishes the proof. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EVB. Beware of the difference between the letter 'O' and the digit '0'.