Lemma 59.103.2. With notation as above. Let $f : X \to Y$ be a morphism of $(\mathit{Sch}/S)_ h$. Then there are commutative diagrams of topoi

and

with $a_ X = \pi _ X \circ \epsilon _ X$ and $a_ Y = \pi _ X \circ \epsilon _ X$.

Lemma 59.103.2. With notation as above. Let $f : X \to Y$ be a morphism of $(\mathit{Sch}/S)_ h$. Then there are commutative diagrams of topoi

\[ \xymatrix{ \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/X)_ h) \ar[rr]_{f_{big, h}} \ar[d]_{\epsilon _ X} & & \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/Y)_ h) \ar[d]^{\epsilon _ Y} \\ \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/X)_{\acute{e}tale}) \ar[rr]^{f_{big, {\acute{e}tale}}} & & \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/Y)_{\acute{e}tale}) } \]

and

\[ \xymatrix{ \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/X)_ h) \ar[rr]_{f_{big, h}} \ar[d]_{a_ X} & & \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/Y)_ h) \ar[d]^{a_ Y} \\ \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale}) \ar[rr]^{f_{small}} & & \mathop{\mathit{Sh}}\nolimits (Y_{\acute{e}tale}) } \]

with $a_ X = \pi _ X \circ \epsilon _ X$ and $a_ Y = \pi _ X \circ \epsilon _ X$.

**Proof.**
The commutativity of the diagrams follows similarly to what was said in Topologies, Section 34.11.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)