Lemma 59.103.2. With notation as above. Let f : X \to Y be a morphism of (\mathit{Sch}/S)_ h. Then there are commutative diagrams of topoi
\xymatrix{ \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/X)_ h) \ar[rr]_{f_{big, h}} \ar[d]_{\epsilon _ X} & & \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/Y)_ h) \ar[d]^{\epsilon _ Y} \\ \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/X)_{\acute{e}tale}) \ar[rr]^{f_{big, {\acute{e}tale}}} & & \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/Y)_{\acute{e}tale}) }
and
\xymatrix{ \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/X)_ h) \ar[rr]_{f_{big, h}} \ar[d]_{a_ X} & & \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/Y)_ h) \ar[d]^{a_ Y} \\ \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale}) \ar[rr]^{f_{small}} & & \mathop{\mathit{Sh}}\nolimits (Y_{\acute{e}tale}) }
with a_ X = \pi _ X \circ \epsilon _ X and a_ Y = \pi _ X \circ \epsilon _ X.
Comments (0)