Lemma 13.27.8. Let $\mathcal{A}$ be an abelian category and let $p \geq 0$. If $\mathop{\mathrm{Ext}}\nolimits ^ p_\mathcal {A}(B, A) = 0$ for any pair of objects $A$, $B$ of $\mathcal{A}$, then $\mathop{\mathrm{Ext}}\nolimits ^ i_\mathcal {A}(B, A) = 0$ for $i \geq p$ and any pair of objects $A$, $B$ of $\mathcal{A}$.

**Proof.**
For $i > p$ write any class $\xi $ as $\delta (E)$ where $E$ is a Yoneda extension

This is possible by Lemma 13.27.5. Set $C = \mathop{\mathrm{Ker}}(Z_{p - 1} \to Z_ p) = \mathop{\mathrm{Im}}(Z_ p \to Z_{p - 1})$. Then $\delta (E)$ is the composition of $\delta (E')$ and $\delta (E'')$ where

and

Since $\delta (E') \in \mathop{\mathrm{Ext}}\nolimits ^ p_\mathcal {A}(B, C) = 0$ we conclude. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)