Lemma 37.33.2. Let f : X \to S be a flat, proper morphism of finite presentation such that f_*\mathcal{O}_ X = \mathcal{O}_ S and this remains true after arbitrary base change. Let \mathcal{E} be a finite locally free \mathcal{O}_ X-module. Assume
\mathcal{E}|_{X_ s} is isomorphic to \mathcal{O}_{X_ s}^{\oplus r_ s} for all s \in S, and
S is reduced.
Then \mathcal{E} = f^*\mathcal{N} for some finite locally free \mathcal{O}_ S-module \mathcal{N}.
Comments (0)