Lemma 37.33.2. Let $f : X \to S$ be a flat, proper morphism of finite presentation such that $f_*\mathcal{O}_ X = \mathcal{O}_ S$ and this remains true after arbitrary base change. Let $\mathcal{E}$ be a finite locally free $\mathcal{O}_ X$-module. Assume
$\mathcal{E}|_{X_ s}$ is isomorphic to $\mathcal{O}_{X_ s}^{\oplus r_ s}$ for all $s \in S$, and
$S$ is reduced.
Then $\mathcal{E} = f^*\mathcal{N}$ for some finite locally free $\mathcal{O}_ S$-module $\mathcal{N}$.
Comments (0)