Lemma 21.21.1. Let $\mathcal{C}$ be a site. Let
be a cartesian diagram of $\mathcal{C}$. Then we have $j_{Y'/Y}^{-1} \circ Rj_{X/Y, *} = Rj_{X'/Y', *} \circ j_{X'/X}^{-1}$ as functors $D(\mathcal{C}/X) \to D(\mathcal{C}/Y')$.
Lemma 21.21.1. Let $\mathcal{C}$ be a site. Let
be a cartesian diagram of $\mathcal{C}$. Then we have $j_{Y'/Y}^{-1} \circ Rj_{X/Y, *} = Rj_{X'/Y', *} \circ j_{X'/X}^{-1}$ as functors $D(\mathcal{C}/X) \to D(\mathcal{C}/Y')$.
Proof. Let $E \in D(\mathcal{C}/X)$. Choose a K-injective complex $\mathcal{I}^\bullet $ of abelian sheaves on $\mathcal{C}/X$ representing $E$. By Lemma 21.20.1 we see that $j_{X'/X}^{-1}\mathcal{I}^\bullet $ is K-injective too. Hence we may compute $Rj_{X'/Y'}(j_{X'/X}^{-1}E)$ by $j_{X'/Y', *}j_{X'/X}^{-1}\mathcal{I}^\bullet $. Thus we see that the equality holds by Sites, Lemma 7.27.5. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)