Lemma 21.30.9. In Situation 21.30.1. For any $X$ in $\mathcal{C}$ the category $\mathcal{A}_ X \subset \textit{Ab}(\mathcal{C}_\tau /X)$ is a weak Serre subcategory and the functor
is an equivalence with quasi-inverse given by $\epsilon _ X^{-1}$.
Lemma 21.30.9. In Situation 21.30.1. For any $X$ in $\mathcal{C}$ the category $\mathcal{A}_ X \subset \textit{Ab}(\mathcal{C}_\tau /X)$ is a weak Serre subcategory and the functor
is an equivalence with quasi-inverse given by $\epsilon _ X^{-1}$.
Proof. We need to check the conditions listed in Homology, Lemma 12.10.3 for $\mathcal{A}_ X$. If $\varphi : \mathcal{F} \to \mathcal{G}$ is a map in $\mathcal{A}_ X$, then $\epsilon _{X, *}\varphi : \epsilon _{X, *}\mathcal{F} \to \epsilon _{X, *}\mathcal{G}$ is a map in $\mathcal{A}'_ X$. Hence $\mathop{\mathrm{Ker}}(\epsilon _{X, *}\varphi )$ and $\mathop{\mathrm{Coker}}(\epsilon _{X, *}\varphi )$ are objects of $\mathcal{A}'_ X$ as this is a weak Serre subcategory of $\textit{Ab}(\mathcal{C}_{\tau '}/X)$. Applying $\epsilon _ X^{-1}$ we obtain an exact sequence
and we see that $\mathop{\mathrm{Ker}}(\varphi )$ and $\mathop{\mathrm{Coker}}(\varphi )$ are in $\mathcal{A}_ X$. Finally, suppose that
is a short exact sequence in $\textit{Ab}(\mathcal{C}_\tau /X)$ with $\mathcal{F}_1$ and $\mathcal{F}_3$ in $\mathcal{A}_ X$. Then applying $\epsilon _{X, *}$ we obtain an exact sequence
Vanishing by Lemma 21.30.8. Hence $\epsilon _{X, *}\mathcal{F}_2$ is in $\mathcal{A}'_ X$ as this is a weak Serre subcategory of $\textit{Ab}(\mathcal{C}_{\tau '}/X)$. Pulling back by $\epsilon _ X$ we conclude that $\mathcal{F}_2$ is in $\mathcal{A}_ X$.
Thus $\mathcal{A}_ X$ is a weak Serre subcategory of $\textit{Ab}(\mathcal{C}_\tau /X)$ and it makes sense to consider the category $D^+_{\mathcal{A}_ X}(\mathcal{C}_\tau /X)$. Observe that $\epsilon _ X^{-1} : \mathcal{A}'_ X \to \mathcal{A}_ X$ is an equivalence and that $\mathcal{F}' \to R\epsilon _{X, *}\epsilon _ X^{-1}\mathcal{F}'$ is an isomorphism for $\mathcal{F}'$ in $\mathcal{A}'_ X$ since we have $(V_ n)$ for all $n$ by Lemma 21.30.8. Thus we conclude by Lemma 21.28.5. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)