The Stacks project

Lemma 21.30.9. In Situation 21.30.1. For any $X$ in $\mathcal{C}$ the category $\mathcal{A}_ X \subset \textit{Ab}(\mathcal{C}_\tau /X)$ is a weak Serre subcategory and the functor

\[ R\epsilon _{X, *} : D^+_{\mathcal{A}_ X}(\mathcal{C}_\tau /X) \longrightarrow D^+_{\mathcal{A}'_ X}(\mathcal{C}_{\tau '}/X) \]

is an equivalence with quasi-inverse given by $\epsilon _ X^{-1}$.

Proof. We need to check the conditions listed in Homology, Lemma 12.10.3 for $\mathcal{A}_ X$. If $\varphi : \mathcal{F} \to \mathcal{G}$ is a map in $\mathcal{A}_ X$, then $\epsilon _{X, *}\varphi : \epsilon _{X, *}\mathcal{F} \to \epsilon _{X, *}\mathcal{G}$ is a map in $\mathcal{A}'_ X$. Hence $\mathop{\mathrm{Ker}}(\epsilon _{X, *}\varphi )$ and $\mathop{\mathrm{Coker}}(\epsilon _{X, *}\varphi )$ are objects of $\mathcal{A}'_ X$ as this is a weak Serre subcategory of $\textit{Ab}(\mathcal{C}_{\tau '}/X)$. Applying $\epsilon _ X^{-1}$ we obtain an exact sequence

\[ 0 \to \epsilon _ X^{-1}\mathop{\mathrm{Ker}}(\epsilon _{X, *}\varphi ) \to \mathcal{F} \to \mathcal{G} \to \epsilon _ X^{-1}\mathop{\mathrm{Coker}}(\epsilon _{X, *}\varphi ) \to 0 \]

and we see that $\mathop{\mathrm{Ker}}(\varphi )$ and $\mathop{\mathrm{Coker}}(\varphi )$ are in $\mathcal{A}_ X$. Finally, suppose that

\[ 0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0 \]

is a short exact sequence in $\textit{Ab}(\mathcal{C}_\tau /X)$ with $\mathcal{F}_1$ and $\mathcal{F}_3$ in $\mathcal{A}_ X$. Then applying $\epsilon _{X, *}$ we obtain an exact sequence

\[ 0 \to \epsilon _{X, *}\mathcal{F}_1 \to \epsilon _{X, *}\mathcal{F}_2 \to \epsilon _{X, *}\mathcal{F}_3 \to R^1\epsilon _{X, *}\mathcal{F}_1 = 0 \]

Vanishing by Lemma 21.30.8. Hence $\epsilon _{X, *}\mathcal{F}_2$ is in $\mathcal{A}'_ X$ as this is a weak Serre subcategory of $\textit{Ab}(\mathcal{C}_{\tau '}/X)$. Pulling back by $\epsilon _ X$ we conclude that $\mathcal{F}_2$ is in $\mathcal{A}_ X$.

Thus $\mathcal{A}_ X$ is a weak Serre subcategory of $\textit{Ab}(\mathcal{C}_\tau /X)$ and it makes sense to consider the category $D^+_{\mathcal{A}_ X}(\mathcal{C}_\tau /X)$. Observe that $\epsilon _ X^{-1} : \mathcal{A}'_ X \to \mathcal{A}_ X$ is an equivalence and that $\mathcal{F}' \to R\epsilon _{X, *}\epsilon _ X^{-1}\mathcal{F}'$ is an isomorphism for $\mathcal{F}'$ in $\mathcal{A}'_ X$ since we have $(V_ n)$ for all $n$ by Lemma 21.30.8. Thus we conclude by Lemma 21.28.5. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EZG. Beware of the difference between the letter 'O' and the digit '0'.