Definition 59.51.1. Let I be a preordered set. Let (X_ i, f_{i'i}) be an inverse system of schemes over I. A system (\mathcal{F}_ i, \varphi _{i'i}) of sheaves on (X_ i, f_{i'i}) is given by
a sheaf \mathcal{F}_ i on (X_ i)_{\acute{e}tale} for all i \in I,
for i' \geq i a map \varphi _{i'i} : f_{i'i}^{-1}\mathcal{F}_ i \to \mathcal{F}_{i'} of sheaves on (X_{i'})_{\acute{e}tale}
such that \varphi _{i''i} = \varphi _{i''i'} \circ f_{i'' i'}^{-1}\varphi _{i'i} whenever i'' \geq i' \geq i.
Comments (0)