The Stacks project

Lemma 59.52.1. Let $X = \mathop{\mathrm{lim}}\nolimits _{i \in I} X_ i$ be a limit of a directed system of schemes with affine transition morphisms $f_{i'i} : X_{i'} \to X_ i$. We assume that $X_ i$ is quasi-compact and quasi-separated for all $i \in I$. Let $\mathcal{F}_ i^\bullet $ be a complex of abelian sheaves on $X_{i, {\acute{e}tale}}$. Let $\varphi _{i'i} : f_{i'i}^{-1}\mathcal{F}_ i^\bullet \to \mathcal{F}_{i'}^\bullet $ be a map of complexes on $X_{i, {\acute{e}tale}}$ such that $\varphi _{i''i} = \varphi _{i''i'} \circ f_{i'' i'}^{-1}\varphi _{i'i}$ whenever $i'' \geq i' \geq i$. Assume there is an integer $a$ such that $\mathcal{F}_ i^ n = 0$ for $n < a$ and all $i \in I$. Then we have

\[ H^ p_{\acute{e}tale}(X, \mathop{\mathrm{colim}}\nolimits f_ i^{-1}\mathcal{F}_ i^\bullet ) = \mathop{\mathrm{colim}}\nolimits H^ p_{\acute{e}tale}(X_ i, \mathcal{F}^\bullet _ i) \]

where $f_ i : X \to X_ i$ is the projection.

Proof. This is a consequence of Theorem 59.51.3. Set $\mathcal{F}^\bullet = \mathop{\mathrm{colim}}\nolimits f_ i^{-1}\mathcal{F}_ i^\bullet $. The theorem tells us that

\[ \mathop{\mathrm{colim}}\nolimits _{i \in I} H_{\acute{e}tale}^ p(X_ i, \mathcal{F}_ i^ n) = H_{\acute{e}tale}^ p(X, \mathcal{F}^ n) \]

for all $n, p \in \mathbf{Z}$. Let us use the spectral sequences

\[ E_{1, i}^{s, t} = H_{\acute{e}tale}^ t(X_ i, \mathcal{F}_ i^ s) \Rightarrow H_{\acute{e}tale}^{s + t}(X_ i, \mathcal{F}_ i^\bullet ) \]

and

\[ E_1^{s, t} = H_{\acute{e}tale}^ t(X, \mathcal{F}^ s) \Rightarrow H_{\acute{e}tale}^{s + t}(X, \mathcal{F}^\bullet ) \]

of Derived Categories, Lemma 13.21.3. Since $\mathcal{F}_ i^ n = 0$ for $n < a$ (with $a$ independent of $i$) we see that only a fixed finite number of terms $E_{1, i}^{s, t}$ (independent of $i$) and $E_1^{s, t}$ contribute to $H^ q_{\acute{e}tale}(X_ i, \mathcal{F}_ i^\bullet )$ and $H^ q_{\acute{e}tale}(X, \mathcal{F}^\bullet )$ and $E_1^{s, t} = \mathop{\mathrm{colim}}\nolimits E_{i, i}^{s, t}$. This implies what we want. Some details omitted. (There is an alternative argument using “stupid” truncations of complexes which avoids using spectral sequences.) $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EZM. Beware of the difference between the letter 'O' and the digit '0'.