Lemma 59.86.5. Consider a cartesian diagram of schemes

$\xymatrix{ X \ar[d]_ f & Y \ar[l]^ h \ar[d]^ e \\ S & T \ar[l]_ g }$

where $g : T \to S$ is quasi-compact and quasi-separated. Let $\mathcal{F}$ be an abelian sheaf on $T_{\acute{e}tale}$. Let $q \geq 0$. The following are equivalent

1. For every geometric point $\overline{x}$ of $X$ with image $\overline{s} = f(\overline{x})$ we have

$H^ q(\mathop{\mathrm{Spec}}(\mathcal{O}^{sh}_{X, \overline{x}}) \times _ S T, \mathcal{F}) = H^ q(\mathop{\mathrm{Spec}}(\mathcal{O}^{sh}_{S, \overline{s}}) \times _ S T, \mathcal{F})$
2. $f^{-1}R^ qg_*\mathcal{F} \to R^ qh_*e^{-1}\mathcal{F}$ is an isomorphism.

Proof. Since $Y = X \times _ S T$ we have $\mathop{\mathrm{Spec}}(\mathcal{O}^{sh}_{X, \overline{x}}) \times _ X Y = \mathop{\mathrm{Spec}}(\mathcal{O}^{sh}_{X, \overline{x}}) \times _ S T$. Thus the map in (1) is the map of stalks at $\overline{x}$ for the map in (2) by Theorem 59.53.1 (and Lemma 59.36.2). Thus the result by Theorem 59.29.10. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).