Processing math: 100%

The Stacks project

Lemma 59.88.2. With f : X \to S and n as in Remark 59.88.1 assume for some q \geq 1 we have BC(f, n, q - 1). Then for every commutative diagram

\xymatrix{ X \ar[d]_ f & X' \ar[l] \ar[d]_{f'} & Y \ar[l]^ h \ar[d]^ e \\ S & S' \ar[l] & T \ar[l]_ g }

with X' = X \times _ S S' and Y = X' \times _{S'} T and g quasi-compact and quasi-separated, and every abelian sheaf \mathcal{F} on T_{\acute{e}tale} annihilated by n

  1. the base change map (f')^{-1}R^ qg_*\mathcal{F}\to R^ qh_*e^{-1}\mathcal{F} is injective,

  2. if \mathcal{F} \subset \mathcal{G} where \mathcal{G} on T_{\acute{e}tale} is annihilated by n, then

    \mathop{\mathrm{Coker}}\left( (f')^{-1}R^ qg_*\mathcal{F}\to R^ qh_*e^{-1}\mathcal{F} \right) \subset \mathop{\mathrm{Coker}}\left( (f')^{-1}R^ qg_*\mathcal{G}\to R^ qh_*e^{-1}\mathcal{G} \right)
  3. if in (2) the sheaf \mathcal{G} is an injective sheaf of \mathbf{Z}/n\mathbf{Z}-modules, then

    \mathop{\mathrm{Coker}}\left((f')^{-1}R^ qg_*\mathcal{F}\to R^ qh_*e^{-1}\mathcal{F} \right) \subset R^ qh_*e^{-1}\mathcal{G}

Proof. Choose a short exact sequence 0 \to \mathcal{F} \to \mathcal{I} \to \mathcal{Q} \to 0 where \mathcal{I} is an injective sheaf of \mathbf{Z}/n\mathbf{Z}-modules. Consider the induced diagram

\xymatrix{ (f')^{-1}R^{q - 1}g_*\mathcal{I} \ar[d]_{\cong } \ar[r] & (f')^{-1}R^{q - 1}g_*\mathcal{Q} \ar[d]_{\cong } \ar[r] & (f')^{-1}R^ qg_*\mathcal{F} \ar[d] \ar[r] & 0 \ar[d] \\ R^{q - 1}h_*e^{-1}\mathcal{I} \ar[r] & R^{q - 1}h_*e^{-1}\mathcal{Q} \ar[r] & R^ qh_*e^{-1}\mathcal{F} \ar[r] & R^ qh_*e^{-1}\mathcal{I} }

with exact rows. We have the zero in the right upper corner as \mathcal{I} is injective. The left two vertical arrows are isomorphisms by BC(f, n, q - 1). We conclude that part (1) holds. The above also shows that

\mathop{\mathrm{Coker}}\left( (f')^{-1}R^ qg_*\mathcal{F}\to R^ qh_*e^{-1}\mathcal{F} \right) \subset R^ qh_*e^{-1}\mathcal{I}

hence part (3) holds. To prove (2) choose \mathcal{F} \subset \mathcal{G} \subset \mathcal{I}. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.