Lemma 59.88.2. With f : X \to S and n as in Remark 59.88.1 assume for some q \geq 1 we have BC(f, n, q - 1). Then for every commutative diagram
\xymatrix{ X \ar[d]_ f & X' \ar[l] \ar[d]_{f'} & Y \ar[l]^ h \ar[d]^ e \\ S & S' \ar[l] & T \ar[l]_ g }
with X' = X \times _ S S' and Y = X' \times _{S'} T and g quasi-compact and quasi-separated, and every abelian sheaf \mathcal{F} on T_{\acute{e}tale} annihilated by n
the base change map (f')^{-1}R^ qg_*\mathcal{F}\to R^ qh_*e^{-1}\mathcal{F} is injective,
if \mathcal{F} \subset \mathcal{G} where \mathcal{G} on T_{\acute{e}tale} is annihilated by n, then
\mathop{\mathrm{Coker}}\left( (f')^{-1}R^ qg_*\mathcal{F}\to R^ qh_*e^{-1}\mathcal{F} \right) \subset \mathop{\mathrm{Coker}}\left( (f')^{-1}R^ qg_*\mathcal{G}\to R^ qh_*e^{-1}\mathcal{G} \right)
if in (2) the sheaf \mathcal{G} is an injective sheaf of \mathbf{Z}/n\mathbf{Z}-modules, then
\mathop{\mathrm{Coker}}\left((f')^{-1}R^ qg_*\mathcal{F}\to R^ qh_*e^{-1}\mathcal{F} \right) \subset R^ qh_*e^{-1}\mathcal{G}
Proof.
Choose a short exact sequence 0 \to \mathcal{F} \to \mathcal{I} \to \mathcal{Q} \to 0 where \mathcal{I} is an injective sheaf of \mathbf{Z}/n\mathbf{Z}-modules. Consider the induced diagram
\xymatrix{ (f')^{-1}R^{q - 1}g_*\mathcal{I} \ar[d]_{\cong } \ar[r] & (f')^{-1}R^{q - 1}g_*\mathcal{Q} \ar[d]_{\cong } \ar[r] & (f')^{-1}R^ qg_*\mathcal{F} \ar[d] \ar[r] & 0 \ar[d] \\ R^{q - 1}h_*e^{-1}\mathcal{I} \ar[r] & R^{q - 1}h_*e^{-1}\mathcal{Q} \ar[r] & R^ qh_*e^{-1}\mathcal{F} \ar[r] & R^ qh_*e^{-1}\mathcal{I} }
with exact rows. We have the zero in the right upper corner as \mathcal{I} is injective. The left two vertical arrows are isomorphisms by BC(f, n, q - 1). We conclude that part (1) holds. The above also shows that
\mathop{\mathrm{Coker}}\left( (f')^{-1}R^ qg_*\mathcal{F}\to R^ qh_*e^{-1}\mathcal{F} \right) \subset R^ qh_*e^{-1}\mathcal{I}
hence part (3) holds. To prove (2) choose \mathcal{F} \subset \mathcal{G} \subset \mathcal{I}.
\square
Comments (0)