Lemma 59.88.4. With f : X \to S and n as in Remark 59.88.1 assume for some q \geq 1 we have BC(f, n, q - 1). Consider commutative diagrams
\vcenter { \xymatrix{ X \ar[d]_ f & X' \ar[d]_{f'} \ar[l] & X'' \ar[l]^{\pi '} \ar[d]_{f''} & Y \ar[l]^{h'} \ar[d]^ e \\ S & S' \ar[l] & S'' \ar[l]_\pi & T \ar[l]_{g'} } } \quad \text{and}\quad \vcenter { \xymatrix{ X' \ar[d]_{f'} & & Y \ar[ll]^{h = h' \circ \pi '} \ar[d]^ e \\ S' & & T \ar[ll]_{g = g' \circ \pi } } }
where all squares are cartesian, g' quasi-compact and quasi-separated, and \pi is integral. Let \mathcal{F} be an abelian sheaf on T_{\acute{e}tale} annihilated by n. If the base change map
(f')^{-1}R^ qg_*\mathcal{F} \longrightarrow R^ qh_*e^{-1}\mathcal{F}
is an isomorphism, then the base change map (f'')^{-1}R^ qg'_*\mathcal{F} \to R^ qh'_*e^{-1}\mathcal{F} is an isomorphism.
Proof.
Since \pi and \pi ' are integral we have R\pi _* = \pi _* and R\pi '_* = \pi '_*, see Lemma 59.43.5. We also have (f')^{-1}\pi _* = \pi '_*(f'')^{-1}. Thus we see that \pi '_*(f'')^{-1}R^ qg'_*\mathcal{F} = (f')^{-1}R^ qg_*\mathcal{F} and \pi '_*R^ qh'_*e^{-1}\mathcal{F} = R^ qh_*e^{-1}\mathcal{F}. Thus the assumption means that our map becomes an isomorphism after applying the functor \pi '_*. Hence we see that it is an isomorphism by Lemma 59.43.5.
\square
Comments (0)