Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 59.88.4. With $f : X \to S$ and $n$ as in Remark 59.88.1 assume for some $q \geq 1$ we have $BC(f, n, q - 1)$. Consider commutative diagrams

\[ \vcenter { \xymatrix{ X \ar[d]_ f & X' \ar[d]_{f'} \ar[l] & X'' \ar[l]^{\pi '} \ar[d]_{f''} & Y \ar[l]^{h'} \ar[d]^ e \\ S & S' \ar[l] & S'' \ar[l]_\pi & T \ar[l]_{g'} } } \quad \text{and}\quad \vcenter { \xymatrix{ X' \ar[d]_{f'} & & Y \ar[ll]^{h = h' \circ \pi '} \ar[d]^ e \\ S' & & T \ar[ll]_{g = g' \circ \pi } } } \]

where all squares are cartesian, $g'$ quasi-compact and quasi-separated, and $\pi $ is integral. Let $\mathcal{F}$ be an abelian sheaf on $T_{\acute{e}tale}$ annihilated by $n$. If the base change map

\[ (f')^{-1}R^ qg_*\mathcal{F} \longrightarrow R^ qh_*e^{-1}\mathcal{F} \]

is an isomorphism, then the base change map $(f'')^{-1}R^ qg'_*\mathcal{F} \to R^ qh'_*e^{-1}\mathcal{F}$ is an isomorphism.

Proof. Since $\pi $ and $\pi '$ are integral we have $R\pi _* = \pi _*$ and $R\pi '_* = \pi '_*$, see Lemma 59.43.5. We also have $(f')^{-1}\pi _* = \pi '_*(f'')^{-1}$. Thus we see that $\pi '_*(f'')^{-1}R^ qg'_*\mathcal{F} = (f')^{-1}R^ qg_*\mathcal{F}$ and $\pi '_*R^ qh'_*e^{-1}\mathcal{F} = R^ qh_*e^{-1}\mathcal{F}$. Thus the assumption means that our map becomes an isomorphism after applying the functor $\pi '_*$. Hence we see that it is an isomorphism by Lemma 59.43.5. $\square$


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.