The Stacks project

Lemma 21.26.1. In the situation above, choose a K-injective complex $\mathcal{I}^\bullet $ of $\mathcal{O}$-modules representing $K$. Using $-1$ times the canonical map for one of the four arrows we get maps of complexes

\[ \mathcal{I}^\bullet (X) \xrightarrow {\alpha } \mathcal{I}^\bullet (Z) \oplus \mathcal{I}^\bullet (Y) \xrightarrow {\beta } \mathcal{I}^\bullet (E) \]

with $\beta \circ \alpha = 0$. Thus a canonical map

\[ c^ K_{X, Z, Y, E} : \mathcal{I}^\bullet (X) \longrightarrow C(\beta )^\bullet [-1] \]

This map is canonical in the sense that a different choice of K-injective complex representing $K$ determines an isomorphic arrow in the derived category of abelian groups. If $c^ K_{X, Z, Y, E}$ is an isomorphism, then using its inverse we obtain a canonical distinguished triangle

\[ R\Gamma (X, K) \to R\Gamma (Z, K) \oplus R\Gamma (Y, K) \to R\Gamma (E, K) \to R\Gamma (X, K)[1] \]

All of these constructions are functorial in $K$.

Proof. This lemma proves itself. For example, if $\mathcal{J}^\bullet $ is a second K-injective complex representing $K$, then we can choose a quasi-isomorphism $\mathcal{I}^\bullet \to \mathcal{J}^\bullet $ which determines quasi-isomorphisms between all the complexes in sight. Details omitted. For the construction of cones and the relationship with distinguished triangles see Derived Categories, Sections 13.9 and 13.10. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0F16. Beware of the difference between the letter 'O' and the digit '0'.