Lemma 59.97.9. Let $k$ be a separably closed field. Let $X$ and $Y$ be finite type schemes over $k$. Let $n \geq 1$ be an integer invertible in $k$. Then for $E \in D(X_{\acute{e}tale}, \mathbf{Z}/n\mathbf{Z})$ and $K \in D(Y_{\acute{e}tale}, \mathbf{Z}/n\mathbf{Z})$ we have

\[ R\Gamma (X \times _{\mathop{\mathrm{Spec}}(k)} Y, \text{pr}_1^{-1}E \otimes _{\mathbf{Z}/n\mathbf{Z}}^\mathbf {L} \text{pr}_2^{-1}K ) = R\Gamma (X, E) \otimes _{\mathbf{Z}/n\mathbf{Z}}^\mathbf {L} R\Gamma (Y, K) \]

**Proof.**
By Lemma 59.97.8 we have

\[ R\text{pr}_{1, *}( \text{pr}_1^{-1}E \otimes _{\mathbf{Z}/n\mathbf{Z}}^\mathbf {L} \text{pr}_2^{-1}K) = E \otimes _{\mathbf{Z}/n\mathbf{Z}}^\mathbf {L} \underline{R\Gamma (Y, K)} \]

We conclude by Lemma 59.96.5 which we may use because $\text{cd}(X) < \infty $ by Lemma 59.96.2. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)