Proposition 115.8.27. Let f : X \to Y be a locally quasi-finite morphism. There exist adjoint functors f_! : \textit{Ab}(X_{\acute{e}tale}) \to \textit{Ab}(Y_{\acute{e}tale}) and f^! : \textit{Ab}(Y_{\acute{e}tale}) \to \textit{Ab}(X_{\acute{e}tale}) with the following properties
the functor f^! is the one constructed in More Étale Cohomology, Lemma 63.6.1,
for any open j : U \to X with f \circ j separated there is a canonical isomorphism f_! \circ j_! = (f \circ j)_!, and
these isomorphisms for U \subset U' \subset X are compatible with the isomorphisms in More Étale Cohomology, Lemma 63.3.13.
Comments (0)