Proposition 115.8.27. Let $f : X \to Y$ be a locally quasi-finite morphism. There exist adjoint functors $f_! : \textit{Ab}(X_{\acute{e}tale}) \to \textit{Ab}(Y_{\acute{e}tale})$ and $f^! : \textit{Ab}(Y_{\acute{e}tale}) \to \textit{Ab}(X_{\acute{e}tale})$ with the following properties

the functor $f^!$ is the one constructed in More Étale Cohomology, Lemma 63.6.1,

for any open $j : U \to X$ with $f \circ j$ separated there is a canonical isomorphism $f_! \circ j_! = (f \circ j)_!$, and

these isomorphisms for $U \subset U' \subset X$ are compatible with the isomorphisms in More Étale Cohomology, Lemma 63.3.13.

## Comments (0)