Lemma 63.4.7. Let $f : X \to Y$ be a locally quasi-finite morphism of schemes. Let $X = \bigcup _{i \in I} X_ i$ be an open covering. Then there exists an exact complex

$\ldots \to \bigoplus \nolimits _{i_0, i_1, i_2} f_{i_0i_1i_2, !} \mathcal{F}|_{X_{i_0i_1i_2}} \to \bigoplus \nolimits _{i_0, i_1} f_{i_0i_1, !} \mathcal{F}|_{X_{i_0i_1}} \to \bigoplus \nolimits _{i_0} f_{i_0, !} \mathcal{F}|_{X_{i_0}} \to f_!\mathcal{F} \to 0$

functorial in $\mathcal{F} \in \textit{Ab}(X_{\acute{e}tale})$, see proof for details.

Proof. Here as usual we set $X_{i_0 \ldots i_ p} = X_{i_0} \cap \ldots \cap X_{i_ p}$ and we denote $f_{i_0 \ldots i_ p}$ the restriction of $f$ to $X_{i_0 \ldots i_ p}$. The maps in the complex are the maps constructed in Remark 63.4.6 with sign rules as in the Čech complex. Exactness follows easily from the description of stalks in Lemma 63.4.5. Details omitted. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).