The Stacks project

Remark 62.4.9. Let $g : Y' \to Y$ be a morphism of schemes. For an abelian presheaf $\mathcal{G}'$ on $Y'_{\acute{e}tale}$ let us denote $g_*\mathcal{G}'$ the presheaf $V \mapsto \mathcal{G}'(Y' \times _ Y V)$. If $\alpha : \mathcal{G} \to g_*\mathcal{G}'$ is a map of abelian presheaves on $Y_{\acute{e}tale}$, then there is a unique map $\alpha ^\# : \mathcal{G}^\# \to g_*((\mathcal{G}')^\# )$ of abelian sheaves on $Y_{\acute{e}tale}$ such that the diagram

\[ \xymatrix{ \mathcal{G} \ar[d] \ar[r]_\alpha & g_*\mathcal{G}' \ar[d] \\ \mathcal{G}^\# \ar[r]^-{\alpha ^\# } & g_*((\mathcal{G}')^\# ) } \]

is commutative where the vertical maps come from the canonical maps $\mathcal{G} \to \mathcal{G}^\# $ and $\mathcal{G}' \to (\mathcal{G}')^\# $. If $\alpha ' : g^{-1}\mathcal{G}^\# \to (\mathcal{G}')^\# $ is the map adjoint to $\alpha ^\# $, then for a geometric point $\overline{y}' : \mathop{\mathrm{Spec}}(k) \to Y'$ with image $\overline{y} = g \circ \overline{y}'$ in $Y$, the map

\[ \alpha '_{\overline{y}'} : \mathcal{G}_{\overline{y}} = (\mathcal{G}^\# )_{\overline{y}} = (g^{-1}\mathcal{G}^\# )_{\overline{y}'} \longrightarrow (\mathcal{G}')^\# _{\overline{y}'} = \mathcal{G}'_{\overline{y}'} \]

is given by mapping the class in the stalk of a section $s$ of $\mathcal{G}$ over an étale neighbourhood $(V, \overline{v})$ to the class of the section $\alpha (s)$ in $g_*\mathcal{G}'(V) = \mathcal{G}'(Y' \times _ Y V)$ over the étale neighbourhood $(Y' \times _ Y V, (\overline{y}', \overline{v}))$ in the stalk of $\mathcal{G}'$ at $\overline{y}'$.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0F78. Beware of the difference between the letter 'O' and the digit '0'.