Lemma 15.8.9. Let $R$ be a ring. Let $M$ be a finitely presented $R$-module. Let $k \geq 0$. Assume that $\text{Fit}_ k(M) = (f)$ for some nonzerodivisor $f \in R$ and $\text{Fit}_{k - 1}(M) = 0$. Then $M$ has projective dimension $\leq 1$.

**Proof.**
Choose a presentation

We claim the image of $A$ is finite locally free of rank $n - k$. If the claim holds, then the lemma is true by definition of projective dimension. To prove the claim we may replace $R$ by the localization at a prime, see Algebra, Lemma 10.78.2. This reduces us the the case discussed in the next paragraph.

Assume $R$ is local. Set $M' = \{ x \in M \mid fx = 0\} $. By Lemma 15.8.8 we can choose $x_1, \ldots , x_ k \in M$ which generate $M/M'$. Then $x_1, \ldots , x_ k$ generate $M_ f = (M/M')_ f$. Hence, if there is a relation $\sum a_ ix_ i = 0$ in $M$, then we see that $a_1, \ldots , a_ k$ map to zero in $R_ f$ since otherwise $\text{Fit}_{k - 1}(M) R_ f = \text{Fit}_{k - 1}(M_ f)$ would be nonzero. Since $f$ is a nonzerodivisor, we conclude $a_1 = \ldots = a_ k = 0$. Thus $M \cong R^{\oplus k} \oplus M'$. After a change of basis in our presentation above, we may assume the first $n - k$ basis vectors of $R^{\oplus n}$ map into the summand $M'$ of $M$ and the last $k$-basis vectors of $R^{\oplus n}$ map to basis elements of the summand $R^{\oplus k}$ of $M$. Having done so, the last $k$ rows of the matrix $A$ vanish. In this way we see that, replacing $M$ by $M'$, $k$ by $0$, $n$ by $n - k$, and $A$ by the submatrix where we delete the last $k$ rows, we reduce to the case discussed in the next paragraph.

Assume $R$ is local, $k = 0$, and $M$ annihilated by $f$. Now the $0$th Fitting ideal of $M$ is $(f)$ and is generated by the $n \times n$ minors of the matrix $A$ of size $n \times m$. (This in particular implies $m \geq n$.) Since $R$ is local, some $n \times n$ minor of $A$ is $uf$ for a unit $u \in R$. After renumbering we may assume this minor is the first one. Moreover, we know all other $n \times n$ minors of $A$ are divisible by $f$. Write $A = (A_1 A_2)$ in block form where $A_1$ is an $n \times n$ matrix and $A_2$ is an $n \times (m - n)$ matrix. By Algebra, Lemma 10.15.6 applied to the transpose of $A$ (!) we find there exists an $n \times n$ matrix $B$ such that

for some $n \times (m - n)$ matrix $C$ with coefficients in $R$. Then we first conclude $BA_1 = fu 1_{n \times n}$. Thus

Since the determinant of $B$ is a nonzerodivisor we conclude that $A_2 = u^{-1}A_1C$. Therefore the image of $A$ is equal to the image of $A_1$ which is isomorphic to $R^{\oplus n}$ because the determinant of $A_1$ is a nonzerodivisor. This finishes the proof. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: