The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

15.8 Fitting ideals

The Fitting ideals of a finite module are the ideals determined by the construction of Lemma 15.8.2.

Lemma 15.8.1. Let $R$ be a ring. Let $A$ be an $n \times m$ matrix with coefficients in $R$. Let $I_ r(A)$ be the ideal generated by the $r \times r$-minors of $A$ with the convention that $I_0(A) = R$ and $I_ r(A) = 0$ if $r > \min (n, m)$. Then

  1. $I_0(A) \supset I_1(A) \supset I_2(A) \supset \ldots $,

  2. if $B$ is an $(n + n') \times m$ matrix, and $A$ is the first $n$ rows of $B$, then $I_{r + n'}(B) \subset I_ r(A)$,

  3. if $C$ is an $n \times n$ matrix then $I_ r(CA) \subset I_ r(A)$.

  4. If $A$ is a block matrix

    \[ \left( \begin{matrix} A_1 & 0 \\ 0 & A_2 \end{matrix} \right) \]

    then $I_ r(A) = \sum _{r_1 + r_2 = r} I_{r_1}(A_1) I_{r_2}(A_2)$.

  5. Add more here.

Proof. Omitted. (Hint: Use that a determinant can be computed by expanding along a column or a row.) $\square$

Lemma 15.8.2. Let $R$ be a ring. Let $M$ be a finite $R$-module. Choose a presentation

\[ \bigoplus \nolimits _{j \in J} R \longrightarrow R^{\oplus n} \longrightarrow M \longrightarrow 0. \]

of $M$. Let $A = (a_{ij})_{i = 1, \ldots , n, j \in J}$ be the matrix of the map $\bigoplus _{j \in J} R \to R^{\oplus n}$. The ideal $\text{Fit}_ k(M)$ generated by the $(n - k) \times (n - k)$ minors of $A$ is independent of the choice of the presentation.

Proof. Let $K \subset R^{\oplus n}$ be the kernel of the surjection $R^{\oplus n} \to M$. Pick $z_1, \ldots , z_{n - k} \in K$ and write $z_ j = (z_{1j}, \ldots , z_{nj})$. Another description of the ideal $\text{Fit}_ k(M)$ is that it is the ideal generated by the $(n - k) \times (n - k)$ minors of all the matrices $(z_{ij})$ we obtain in this way.

Suppose we change the surjection into the surjection $R^{\oplus n + n'} \to M$ with kernel $K'$ where we use the original map on the first $n$ standard basis elements of $R^{\oplus n + n'}$ and $0$ on the last $n'$ basis vectors. Then the corresponding ideals are the same. Namely, if $z_1, \ldots , z_{n - k} \in K$ as above, let $z'_ j = (z_{1j}, \ldots , z_{nj}, 0, \ldots , 0) \in K'$ for $j = 1, \ldots , n - k$ and $z'_{n + j'} = (0, \ldots , 0, 1, 0, \ldots , 0) \in K'$. Then we see that the ideal of $(n - k) \times (n - k)$ minors of $(z_{ij})$ agrees with the ideal of $(n + n' - k) \times (n + n' - k)$ minors of $(z'_{ij})$. This gives one of the inclusions. Conversely, given $z'_1, \ldots , z'_{n + n' - k}$ in $K'$ we can project these to $R^{\oplus n}$ to get $z_1, \ldots , z_{n + n' - k}$ in $K$. By Lemma 15.8.1 we see that the ideal generated by the $(n + n' - k) \times (n + n' - k)$ minors of $(z'_{ij})$ is contained in the ideal generated by the $(n - k) \times (n - k)$ minors of $(z_{ij})$. This gives the other inclusion.

Let $R^{\oplus m} \to M$ be another surjection with kernel $L$. By Schanuel's lemma (Algebra, Lemma 10.108.1) and the results of the previous paragraph, we may assume $m = n$ and that there is an isomorphism $R^{\oplus n} \to R^{\oplus m}$ commuting with the surjections to $M$. Let $C = (c_{li})$ be the (invertible) matrix of this map (it is a square matrix as $n = m$). Then given $z'_1, \ldots , z'_{n - k} \in L$ as above we can find $z_1, \ldots , z_{n - k} \in K$ with $z_1' = Cz_1, \ldots , z'_{n - k} = Cz_{n - k}$. By Lemma 15.8.1 we get one of the inclusions. By symmetry we get the other. $\square$

Definition 15.8.3. Let $R$ be a ring. Let $M$ be a finite $R$-module. Let $k \geq 0$. The $k$th Fitting ideal of $M$ is the ideal $\text{Fit}_ k(M)$ constructed in Lemma 15.8.2. Set $\text{Fit}_{-1}(M) = 0$.

Since the Fitting ideals are the ideals of minors of a big matrix (numbered in reverse ordering from the ordering in Lemma 15.8.1) we see that

\[ 0 = \text{Fit}_{-1}(M) \subset \text{Fit}_0(M) \subset \text{Fit}_1(M) \subset \ldots \subset \text{Fit}_ t(M) = R \]

for some $t \gg 0$. Here are some basic properties of Fitting ideals.

Lemma 15.8.4. Let $R$ be a ring. Let $M$ be a finite $R$-module.

  1. If $M$ can be generated by $n$ elements, then $\text{Fit}_ n(M) = R$.

  2. Given a second finite $R$-module $M'$ we have

    \[ \text{Fit}_ l(M \oplus M') = \sum \nolimits _{k + k' = l} \text{Fit}_ k(M)\text{Fit}_{k'}(M') \]
  3. If $R \to R'$ is a ring map, then $\text{Fit}_ k(M \otimes _ R R')$ is the ideal of $R'$ generated by the image of $\text{Fit}_ k(M)$.

  4. If $M$ is of finite presentation, then $\text{Fit}_ k(M)$ is a finitely generated ideal.

  5. If $M \to M'$ is a surjection, then $\text{Fit}_ k(M) \subset \text{Fit}_ k(M')$.

  6. We have $\text{Fit}_0(M) \subset \text{Ann}_ R(M)$.

  7. We have $V(\text{Fit}_0(M)) = \text{Supp}(M)$.

  8. Add more here.

Proof. Part (1) follows from the fact that $I_0(A) = R$ in Lemma 15.8.1.

Part (2) follows form the corresponding statement in Lemma 15.8.1.

Part (3) follows from the fact that $\otimes _ R R'$ is right exact, so the base change of a presentation of $M$ is a presentation of $M \otimes _ R R'$.

Proof of (4). Let $R^{\oplus m} \xrightarrow {A} R^{\oplus n} \to M \to 0$ be a presentation. Then $\text{Fit}_ k(M)$ is the ideal generated by the $n - k \times n - k$ minors of the matrix $A$.

Part (5) is immediate from the definition.

Proof of (6). Choose a presentation of $M$ with matrix $A$ as in Lemma 15.8.2. Let $J' \subset J$ be a subset of cardinality $n$. It suffices to show that $f = \det (a_{ij})_{i = 1, \ldots , n, j \in J'}$ annihilates $M$. This is clear because the cokernel of

\[ R^{\oplus n} \xrightarrow {A' = (a_{ij})_{i = 1, \ldots , n, j \in J'}} R^{\oplus n} \to M \to 0 \]

is killed by $f$ as there is a matrix $B$ with $A' B = f1_{n \times n}$.

Proof of (7). Choose a presentation of $M$ with matrix $A$ as in Lemma 15.8.2. By Nakayama's lemma (Algebra, Lemma 10.19.1) we have

\[ M_\mathfrak p \not= 0 \Leftrightarrow M \otimes _ R \kappa (\mathfrak p) \not= 0 \Leftrightarrow \text{rank}(\text{image }A\text{ in }\kappa (\mathfrak p)) < n \]

Clearly $\text{Fit}_0(M)$ exactly cuts out the set of primes with this property. $\square$

Example 15.8.5. Let $R$ be a ring. The Fitting ideals of the finite free module $M = R^{\oplus n}$ are $\text{Fit}_ k(M) = 0$ for $k < n$ and $\text{Fit}_ k(M) = R$ for $k \geq n$.

Lemma 15.8.6. Let $R$ be a ring. Let $M$ be a finite $R$-module. Let $k \geq 0$. Let $\mathfrak p \subset R$ be a prime ideal. The following are equivalent

  1. $\text{Fit}_ k(M) \not\subset \mathfrak p$,

  2. $\dim _{\kappa (\mathfrak p)} M \otimes _ R \kappa (\mathfrak p) \leq k$,

  3. $M_\mathfrak p$ can be generated by $k$ element over $R_\mathfrak p$, and

  4. $M_ f$ can be generated by $k$ elements over $R_ f$ for some $f \in R$, $f \not\in \mathfrak p$.

Proof. By Nakayama's lemma (Algebra, Lemma 10.19.1) we see that $M_ f$ can be generated by $k$ elements over $R_ f$ for some $f \in R$, $f \not\in \mathfrak p$ if $M \otimes _ R \kappa (\mathfrak p)$ can be generated by $k$ elements. Hence (2), (3), and (4) are equivalent. Using Lemma 15.8.4 part (3) this reduces the problem to the case where $R$ is a field and $\mathfrak p = (0)$. In this case the result follows from Example 15.8.5. $\square$

Lemma 15.8.7. Let $R$ be a ring. Let $M$ be a finite $R$-module. Let $r \geq 0$. The following are equivalent

  1. $M$ is finite locally free of rank $r$ (Algebra, Definition 10.77.1),

  2. $\text{Fit}_{r - 1}(M) = 0$ and $\text{Fit}_ r(M) = R$, and

  3. $\text{Fit}_ k(M) = 0$ for $k < r$ and $\text{Fit}_ k(M) = R$ for $k \geq r$.

Proof. It is immediate that (2) is equivalent to (3) because the Fitting ideals form an increasing sequence of ideals. Since the formation of $\text{Fit}_ k(M)$ commutes with base change (Lemma 15.8.4) we see that (1) implies (2) by Example 15.8.5 and glueing results (Algebra, Section 10.22). Conversely, assume (2). By Lemma 15.8.6 we may assume that $M$ is generated by $r$ elements. Thus a presentation $\bigoplus _{j \in J} R \to R^{\oplus r} \to M \to 0$. But now the assumption that $\text{Fit}_{r - 1}(M) = 0$ implies that all entries of the matrix of the map $\bigoplus _{j \in J} R \to R^{\oplus r}$ are zero. Thus $M$ is free. $\square$

Lemma 15.8.8. Let $R$ be a local ring. Let $M$ be a finite $R$-module. Let $k \geq 0$. Assume that $\text{Fit}_ k(M) = (f)$ for some $f \in R$. Let $M'$ be the quotient of $M$ by $\{ x \in M \mid fx = 0\} $. Then $M'$ can be generated by $k$ elements.

Proof. Choose generators $x_1, \ldots , x_ n \in M$ corresponding to the surjection $R^{\oplus n} \to M$. Since $R$ is local if a set of elements $E \subset (f)$ generates $(f)$, then some $e \in E$ generates $(f)$, see Algebra, Lemma 10.19.1. Hence we may pick $z_1, \ldots , z_{n - k}$ in the kernel of $R^{\oplus n} \to M$ such that some $(n - k) \times (n - k)$ minor of the $n \times (n - k)$ matrix $A = (z_{ij})$ generates $(f)$. After renumbering the $x_ i$ we may assume the first minor $\det (z_{ij})_{1 \leq i, j \leq n - k}$ generates $(f)$, i.e., $\det (z_{ij})_{1 \leq i, j \leq n - k} = uf$ for some unit $u \in R$. Every other minor is a multiple of $f$. By Algebra, Lemma 10.14.6 there exists a $n - k \times n - k$ matrix $B$ such that

\[ AB = f \left( \begin{matrix} u 1_{n - k \times n - k} \\ C \end{matrix} \right) \]

for some matrix $C$ with coefficients in $R$. This implies that for every $i \leq n - k$ the element $y_ i = ux_ i + \sum _ j c_{ji}x_ j$ is annihilated by $f$. Since $M/\sum Ry_ i$ is generated by the images of $x_{n - k + 1}, \ldots , x_ n$ we win. $\square$


Comments (4)

Comment #3040 by SE user on

Lemma 15.8.4, Proof of (6): "killed by " or "killed by "?

Comment #3385 by shanbei on

In the third line of proof of (7) in Lemma 07ZA, perhaps you meant the rank of image is less than n instead of \leq?


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07Z6. Beware of the difference between the letter 'O' and the digit '0'.