Processing math: 100%

The Stacks project

Lemma 42.49.1. Let (S, \delta ) be as in Situation 42.7.1. Let X be locally of finite type over S. Let Z \subset X be a closed subscheme. Let

b : W \longrightarrow \mathbf{P}^1_ X

be a proper morphism of schemes. Let Q \in D(\mathcal{O}_ W) be a perfect object. Denote W_\infty \subset W the inverse image of the divisor D_\infty \subset \mathbf{P}^1_ X with complement \mathbf{A}^1_ X. We assume

  1. Chern classes of Q are defined (Section 42.46),

  2. b is an isomorphism over \mathbf{A}^1_ X,

  3. there exists a closed subscheme T \subset W_\infty containing all points of W_\infty lying over X \setminus Z such that Q|_ T is zero, resp. isomorphic to a finite locally free \mathcal{O}_ T-module of rank < p sitting in cohomological degree 0.

Then there exists a canonical bivariant class

P'_ p(Q),\text{ resp. }c'_ p(Q) \in A^ p(Z \to X)

with (Z \to X)_* \circ P'_ p(Q) = P_ p(Q|_{X \times \{ 0\} }), resp. (Z \to X)_* \circ c'_ p(Q) = c_ p(Q|_{X \times \{ 0\} }).

Proof. Denote E \subset W_\infty the inverse image of Z. Then W_\infty = T \cup E and b induces a proper morphism E \to Z. Denote C \in A^0(W_\infty \to X) the bivariant class constructed in Lemma 42.48.1. Denote P'_ p(Q|_ E), resp. c'_ p(Q|_ E) in A^ p(E \to W_\infty ) the bivariant class constructed in Lemma 42.47.1. This makes sense because (Q|_ E)|_{T \cap E} is zero, resp. isomorphic to a finite locally free \mathcal{O}_{E \cap T}-module of rank < p sitting in cohomological degree 0 by assumption (A2). Then we define

P'_ p(Q) = (E \to Z)_* \circ P'_ p(Q|_ E) \circ C,\text{ resp. } c'_ p(Q) = (E \to Z)_* \circ c'_ p(Q|_ E) \circ C

This is a bivariant class, see Lemma 42.33.4. Since E \to Z \to X is equal to E \to W_\infty \to W \to X we see that

\begin{align*} (Z \to X)_* \circ c'_ p(Q) & = (W \to X)_* \circ i_{\infty , *} \circ (E \to W_\infty )_* \circ c'_ p(Q|_ E) \circ C \\ & = (W \to X)_* \circ i_{\infty , *} \circ c_ p(Q|_{W_\infty }) \circ C \\ & = (W \to X)_* \circ c_ p(Q) \circ i_{\infty , *} \circ C \\ & = (W \to X)_*\circ c_ p(Q) \circ i_{0, *} \\ & = (W \to X)_* \circ i_{0, *} \circ c_ p(Q|_{X \times \{ 0\} }) \\ & = c_ p(Q|_{X \times \{ 0\} }) \end{align*}

The second equality holds by Lemma 42.47.4. The third equality because c_ p(Q) is a bivariant class. The fourth equality by Lemma 42.48.1. The fifth equality because c_ p(Q) is a bivariant class. The final equality because (W_0 \to W) \circ (W \to X) is the identity on X if we identify W_0 with X as we've done above. The exact same sequence of equations works to prove the property for P'_ p(Q). \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.