Lemma 41.60.2. Let $k$ be a field. Let $X$ be a scheme locally of finite type over $k$. Then we have a canonical identification

for all $p \in \mathbf{Z}$.

Lemma 41.60.2. Let $k$ be a field. Let $X$ be a scheme locally of finite type over $k$. Then we have a canonical identification

\[ A^ p(X \to \mathop{\mathrm{Spec}}(k)) = \mathop{\mathrm{CH}}\nolimits _{-p}(X) \]

for all $p \in \mathbf{Z}$.

**Proof.**
Consider the element $[\mathop{\mathrm{Spec}}(k)] \in \mathop{\mathrm{CH}}\nolimits _0(\mathop{\mathrm{Spec}}(k))$. We get a map $A^ p(X \to \mathop{\mathrm{Spec}}(k)) \to \mathop{\mathrm{CH}}\nolimits _{-p}(X)$ by sending $c$ to $c \cap [\mathop{\mathrm{Spec}}(k)]$.

Conversely, suppose we have $\alpha \in \mathop{\mathrm{CH}}\nolimits _{-p}(X)$. Then we can define $c_\alpha \in A^ p(X \to \mathop{\mathrm{Spec}}(k))$ as follows: given $X' \to \mathop{\mathrm{Spec}}(k)$ and $\alpha ' \in \mathop{\mathrm{CH}}\nolimits _ n(X')$ we let

\[ c_\alpha \cap \alpha ' = \alpha \times \alpha ' \]

in $\mathop{\mathrm{CH}}\nolimits _{n - p}(X \times _ k X')$. To show that this is a bivariant class we write $\alpha = \sum n_ i[X_ i]$ as in Definition 41.8.1. Consider the composition

\[ \coprod X_ i \xrightarrow {g} X \to \mathop{\mathrm{Spec}}(k) \]

and denote $f : \coprod X_ i \to \mathop{\mathrm{Spec}}(k)$ the composition. Then $g$ is proper and $f$ is flat of relative dimension $-p$. Pullback along $f$ is a bivariant class $f^* \in A^ p(\coprod X_ i \to \mathop{\mathrm{Spec}}(k))$ by Lemma 41.32.2. Denote $\nu \in A^0(\coprod X_ i)$ the bivariant class which multiplies a cycle by $n_ i$ on the $i$th component. Thus $\nu \circ f^* \in A^ p(\coprod X_ i \to X)$. Finally, we have a bivariant class

\[ g_* \circ \nu \circ f^* \]

by Lemma 41.32.4. The reader easily verifies that $c_\alpha $ is equal to this class and hence is itself a bivariant class.

To finish the proof we have to show that the two constructions are mutually inverse. Since $c_\alpha \cap [\mathop{\mathrm{Spec}}(k)] = \alpha $ this is clear for one of the two directions. For the other, let $c \in A^ p(X \to \mathop{\mathrm{Spec}}(k))$ and set $\alpha = c \cap [\mathop{\mathrm{Spec}}(k)]$. It suffices to prove that

\[ c \cap [X'] = c_\alpha \cap [X'] \]

when $X'$ is an integral scheme locally of finite type over $\mathop{\mathrm{Spec}}(k)$, see Lemma 41.34.3. However, then $p' : X' \to \mathop{\mathrm{Spec}}(k)$ is flat of relative dimension $\dim (X')$ and hence $[X'] = (p')^*[\mathop{\mathrm{Spec}}(k)]$. Thus the fact that the bivariant classes $c$ and $c_\alpha $ agree on $[\mathop{\mathrm{Spec}}(k)]$ implies they agree when capped against $[X']$ and the proof is complete. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)