Remark 42.61.4. The upshot of Lemmas 42.61.2 and 42.61.3 is the following. Let $k$ be a field. Let $X$ be a scheme locally of finite type over $k$. Let $\alpha \in \mathop{\mathrm{CH}}\nolimits _*(X)$. Let $Y \to Z$ be a morphism of schemes locally of finite type over $k$. Let $c' \in A^ q(Y \to Z)$. Then

in $\mathop{\mathrm{CH}}\nolimits _*(X \times _ k Y)$ for any $\beta \in \mathop{\mathrm{CH}}\nolimits _*(Z)$. Namely, this follows by taking $c = c_\alpha \in A^*(X \to \mathop{\mathrm{Spec}}(k))$ the bivariant class corresponding to $\alpha $, see proof of Lemma 42.61.2.

## Comments (0)