Lemma 33.47.1. Let k be a field. Let X be a proper scheme over k. Let \mathcal{L} be an ample invertible \mathcal{O}_ X-module. Let Z \subset X be a closed subscheme. Then there exists an integer n_0 such that for all n \geq n_0 the kernel V_ n of \Gamma (X, \mathcal{L}^{\otimes n}) \to \Gamma (Z, \mathcal{L}^{\otimes n}|_ Z) generates \mathcal{L}^{\otimes n}|_{X \setminus Z} and the canonical morphism
X \setminus Z \longrightarrow \mathbf{P}(V_ n)
is an immersion of schemes over k.
Proof.
Let \mathcal{I} \subset \mathcal{O}_ X be the quasi-coherent ideal sheaf of Z. Observe that via the inclusion \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n} \subset \mathcal{L}^{\otimes n} we have V_ n = \Gamma (X, \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n}). Choose n_1 such that for n \geq n_1 the sheaf \mathcal{I} \otimes \mathcal{L}^{\otimes n} is globally generated, see Properties, Proposition 28.26.13. It follows that V_ n generates \mathcal{L}^{\otimes n}|_{X \setminus Z} for n \geq n_1.
For n \geq n_1 denote \psi _ n : V_ n \to \Gamma (X \setminus Z, \mathcal{L}^{\otimes n}|_{X \setminus Z}) the restriction map. We get a canonical morphism
\varphi = \varphi _{\mathcal{L}^{\otimes n}|_{X \setminus Z}, \psi _ n} : X \setminus Z \longrightarrow \mathbf{P}(V_ n)
by Constructions, Example 27.21.2. Choose n_2 such that for all n \geq n_2 the invertible sheaf \mathcal{L}^{\otimes n} is very ample on X. We claim that n_0 = n_1 + n_2 works.
Proof of the claim. Say n \geq n_0 and write n = n_1 + n'. For x \in X \setminus Z we can choose s_1 \in V_1 not vanishing at x. Set V' = \Gamma (X, \mathcal{L}^{\otimes n'}). By our choice of n and n' we see that the corresponding morphism \varphi ' : X \to \mathbf{P}(V') is a closed immersion. Thus if we choose s' \in \Gamma (X, \mathcal{L}^{\otimes n'}) not vanishing at x, then X_{s'} = (\varphi ')^{-1}(D_+(s')) (see Constructions, Lemma 27.14.1) is affine and X_{s'} \to D_+(s') is a closed immersion. Then s = s_1 \otimes s' \in V_ n does not vanish at x. If D_+(s) \subset \mathbf{P}(V_ n) denotes the corresponding open affine space of our projective space, then \varphi ^{-1}(D_+(s)) = X_ s \subset X \setminus Z (see reference above). The open X_ s = X_{s'} \cap X_{s_1} is affine, see Properties, Lemma 28.26.4. Consider the ring map
\text{Sym}(V)_{(s)} \longrightarrow \mathcal{O}_ X(X_ s)
defining the morphism X_ s \to D_+(s). Because X_{s'} \to D_+(s') is a closed immersion, the images of the elements
\frac{s_1 \otimes t'}{s_1 \otimes s'}
where t' \in V' generate the image of \mathcal{O}_ X(X_{s'}) \to \mathcal{O}_ X(X_ s). Since X_ s \to X_{s'} is an open immersion, this implies that X_ s \to D_+(s) is an immersion of affine schemes (see below). Thus \varphi _ n is an immersion by Morphisms, Lemma 29.3.5.
Let a : A' \to A and c : B \to A be ring maps such that \mathop{\mathrm{Spec}}(a) is an immersion and \mathop{\mathrm{Im}}(a) \subset \mathop{\mathrm{Im}}(c). Set B' = A' \times _ A B with projections b : B' \to B and c' : B' \to A'. By assumption c' is surjective and hence \mathop{\mathrm{Spec}}(c') is a closed immersion. Whence \mathop{\mathrm{Spec}}(c') \circ \mathop{\mathrm{Spec}}(a) is an immersion (Schemes, Lemma 26.24.3). Then \mathop{\mathrm{Spec}}(c) has to be an immersion because it factors the immersion \mathop{\mathrm{Spec}}(c') \circ \mathop{\mathrm{Spec}}(a) = \mathop{\mathrm{Spec}}(b) \circ \mathop{\mathrm{Spec}}(c), see Morphisms, Lemma 29.3.1.
\square
Comments (2)
Comment #7839 by quasicompact on
Comment #8063 by Stacks Project on