The Stacks project

Lemma 33.46.1. Let $k$ be a field. Let $X$ be a proper scheme over $k$. Let $\mathcal{L}$ be an ample invertible $\mathcal{O}_ X$-module. Let $Z \subset X$ be a closed subscheme. Then there exists an integer $n_0$ such that for all $n \geq n_0$ the kernel $V_ n$ of $\Gamma (X, \mathcal{L}^{\otimes n}) \to \Gamma (Z, \mathcal{L}^{\otimes n}|_ Z)$ generates $\mathcal{L}^{\otimes n}|_{X \setminus Z}$ and the canonical morphism

\[ X \setminus Z \longrightarrow \mathbf{P}(V_ n) \]

is an immersion of schemes over $k$.

Proof. Let $\mathcal{I} \subset \mathcal{O}_ X$ be the quasi-coherent ideal sheaf of $Z$. Observe that via the inclusion $\mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n} \subset \mathcal{L}^{\otimes n}$ we have $V_ n = \Gamma (X, \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n})$. Choose $n_1$ such that for $n \geq n_1$ the sheaf $\mathcal{I} \otimes \mathcal{L}^{\otimes n}$ is globally generated, see Properties, Proposition 28.26.13. It follows that $V_ n$ gererates $\mathcal{L}^{\otimes n}|_{X \setminus Z}$ for $n \geq n_1$.

For $n \geq n_1$ denote $\psi _ n : V_ n \to \Gamma (X \setminus Z, \mathcal{L}^{\otimes n}|_{X \setminus Z})$ the restriction map. We get a canonical morphism

\[ \varphi = \varphi _{\mathcal{L}^{\otimes n}|_{X \setminus Z}, \psi _ n} : X \setminus Z \longrightarrow \mathbf{P}(V_ n) \]

by Constructions, Example 27.21.2. Choose $n_2$ such that for all $n \geq n_2$ the invertible sheaf $\mathcal{L}^{\otimes n}$ is very ample on $X$. We claim that $n_0 = n_1 + n_2$ works.

Proof of the claim. Say $n \geq n_0$ and write $n = n_1 + n'$. For $x \in X \setminus Z$ we can choose $s_1 \in V_1$ not vanishing at $x$. Set $V' = \Gamma (X, \mathcal{L}^{\otimes n'})$. By our choice of $n$ and $n'$ we see that the corresponding morphism $\varphi ' : X \to \mathbf{P}(V')$ is a closed immersion. Thus if we choose $s' \in \Gamma (X, \mathcal{L}^{\otimes n'})$ not vanishing at $x$, then $X_{s'} = (\varphi ')^{-1}(D_+(s')$ (see Constructions, Lemma 27.14.1) is affine and $X_{s'} \to D_+(s')$ is a closed immersion. Then $s = s_1 \otimes s' \in V_ n$ does not vanish at $x$. If $D_+(s) \subset \mathbf{P}(V_ n)$ denotes the corresponding open affine space of our projective space, then $\varphi ^{-1}(D_+(s)) = X_ s \subset X \setminus Z$ (see reference above). The open $X_ s = X_{s'} \cap X_{s_1}$ is affine, see Properties, Lemma 28.26.4. Consider the ring map

\[ \text{Sym}(V)_{(s)} \longrightarrow \mathcal{O}_ X(X_ s) \]

defining the morphism $X_ s \to D_+(s)$. Because $X_{s'} \to D_+(s')$ is a closed immersion, the images of the elements

\[ \frac{s_1 \otimes t'}{s_1 \otimes s'} \]

where $t' \in V'$ generate the image of $\mathcal{O}_ X(X_{s'}) \to \mathcal{O}_ X(X_ s)$. Since $X_ s \to X_{s'}$ is an open immersion, this implies that $X_ s \to D_+(s)$ is an immersion of affine schemes (see below). Thus $\varphi _ n$ is an immersion by Morphisms, Lemma 29.3.5.

Let $a : A' \to A$ and $c : B \to A$ be ring maps such that $\mathop{\mathrm{Spec}}(a)$ is an immersion and $\mathop{\mathrm{Im}}(a) \subset \mathop{\mathrm{Im}}(c)$. Set $B' = A' \times _ A B$ with projections $b : B' \to B$ and $c' : B' \to A'$. By assumption $c'$ is surjective and hence $\mathop{\mathrm{Spec}}(c')$ is a closed immersion. Whence $\mathop{\mathrm{Spec}}(c') \circ \mathop{\mathrm{Spec}}(a)$ is an immersion (Schemes, Lemma 26.24.3). Then $\mathop{\mathrm{Spec}}(c)$ has to be an immersion because it factors the immersion $\mathop{\mathrm{Spec}}(c') \circ \mathop{\mathrm{Spec}}(a) = \mathop{\mathrm{Spec}}(b) \circ \mathop{\mathrm{Spec}}(c)$, see Morphisms, Lemma 29.3.1. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FD5. Beware of the difference between the letter 'O' and the digit '0'.