Lemma 42.55.1. Let (S, \delta ) be as in Situation 42.7.1. Let X be a scheme locally of finite type over S. Let \mathcal{E} be a locally free \mathcal{O}_ X-module of rank r. Then
\prod \nolimits _{n = 0, \ldots , r} c(\wedge ^ n \mathcal{E})^{(-1)^ n} = 1 - (r - 1)! c_ r(\mathcal{E}) + \ldots
Proof. By the splitting principle we can turn this into a calculation in the polynomial ring on the Chern roots x_1, \ldots , x_ r of \mathcal{E}. See Section 42.43. Observe that
c(\wedge ^ n \mathcal{E}) = \prod \nolimits _{1 \leq i_1 < \ldots < i_ n \leq r} (1 + x_{i_1} + \ldots + x_{i_ n})
Thus the logarithm of the left hand side of the equation in the lemma is
- \sum \nolimits _{p \geq 1} \sum \nolimits _{n = 0}^ r \sum \nolimits _{1 \leq i_1 < \ldots < i_ n \leq r} \frac{(-1)^{p + n}}{p}(x_{i_1} + \ldots + x_{i_ n})^ p
Please notice the minus sign in front. However, we have
\sum \nolimits _{p \geq 0} \sum \nolimits _{n = 0}^ r \sum \nolimits _{1 \leq i_1 < \ldots < i_ n \leq r} \frac{(-1)^{p + n}}{p!}(x_{i_1} + \ldots + x_{i_ n})^ p = \prod (1 - e^{-x_ i})
Hence we see that the first nonzero term in our Chern class is in degree r and equal to the predicted value. \square
Comments (0)