Lemma 45.3.9. Let f : Y \to X be a morphism of smooth projective schemes over k. Assume X and Y equidimensional of dimensions d and e. Denote a = [\Gamma _ f] \in \text{Corr}^0(X, Y) and a^ t = [\Gamma _ f^ t] \in \text{Corr}^{d - e}(Y, X). Set \eta _ X = [\Gamma _{X \to X \times X}] \in \text{Corr}^0(X \times X, X), \eta _ Y = [\Gamma _{Y \to Y \times Y}] \in \text{Corr}^0(Y \times Y, Y), [X] \in \text{Corr}^{-d}(X, \mathop{\mathrm{Spec}}(k)), and [Y] \in \text{Corr}^{-e}(Y, \mathop{\mathrm{Spec}}(k)). The diagram
\xymatrix{ X \otimes Y \ar[r]_{a \otimes \text{id}} \ar[d]_{\text{id} \otimes a^ t} & Y \otimes Y \ar[r]_{\eta _ Y} & Y \ar[d]^{[Y]} \\ X \otimes X \ar[r]^{\eta _ X} & X \ar[r]^{[X]} & \mathop{\mathrm{Spec}}(k) }
is commutative in the category of correspondences.
Proof.
Recall that \text{Corr}^ r(W, \mathop{\mathrm{Spec}}(k)) = \mathop{\mathrm{CH}}\nolimits _{-r}(W) for any smooth projective scheme W over k and given c \in \text{Corr}^ s(W', W) the composition with c agrees with pullback by c as a map \mathop{\mathrm{CH}}\nolimits _{-r}(W) \to \mathop{\mathrm{CH}}\nolimits _{-r - s}(W') (Lemma 45.3.1). Finally, we have Lemma 45.3.6 which tells us how to convert this into usual pushforward and pullback of cycles. We have
(a \otimes \text{id})^* \eta _ Y^* [Y] = (a \otimes \text{id})^* [\Delta _ Y] = (f \times \text{id})_*\Delta _ Y = [\Gamma _ f]
and the other way around we get
(\text{id} \otimes a^ t)^* \eta _ X^* [X] = (\text{id} \otimes a^ t)^* [\Delta _ X] = (\text{id} \times f)^![\Delta _ X] = [\Gamma _ f]
The last equality follows from Chow Homology, Lemma 42.59.8. In other words, going either way around the diagram we obtain the element of \text{Corr}^ d(X \times Y, \mathop{\mathrm{Spec}}(k)) corresponding to the cycle \Gamma _ f \subset X \times Y.
\square
Comments (0)