Lemma 45.9.1. Assume given (D0), (D1), and (D3) satisfying (A). For f : X \to Y a morphism of nonempty equidimensional smooth projective schemes over k we have f_*(f^*b \cup a) = b \cup f_*a. If g : Y \to Z is a second morphism with Z nonempty smooth projective and equidimensional, then g_* \circ f_* = (g \circ f)_*.
Proof. The first equality holds because
\int _ Y c \cup b \cup f_*a = \int _ X f^*c \cup f^*b \cup a = \int _ Y c \cup f_*(f^*b \cup a).
The second equality holds because
\int _ Z c \cup (g \circ f)_*a = \int _ X (g \circ f)^*c \cup a = \int _ X f^* g^* c \cup a = \int _ Y g^*c \cup f_*a = \int _ Z c \cup g_*f_*a
This ends the proof. \square
Comments (0)