Lemma 45.9.4. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C). Then $H^ i(\mathop{\mathrm{Spec}}(k)) = 0$ for $i \not= 0$ and there is a unique $F$-algebra isomorphism $F = H^0(\mathop{\mathrm{Spec}}(k))$. We have $\gamma ([\mathop{\mathrm{Spec}}(k)]) = 1$ and $\int _{\mathop{\mathrm{Spec}}(k)} 1 = 1$.

**Proof.**
By axiom (C)(d) we see that $H^0(\mathop{\mathrm{Spec}}(k))$ is nonzero and even $\gamma ([\mathop{\mathrm{Spec}}(k)])$ is nonzero. Since $\mathop{\mathrm{Spec}}(k) \times \mathop{\mathrm{Spec}}(k) = \mathop{\mathrm{Spec}}(k)$ we get

by axiom (B)(a) which implies (look at dimensions) that only $H^0$ is nonzero and moreover has dimension $1$. Thus $F = H^0(\mathop{\mathrm{Spec}}(k))$ via the unique $F$-algebra isomorphism given by mapping $1 \in F$ to $1 \in H^0(\mathop{\mathrm{Spec}}(k))$. Since $[\mathop{\mathrm{Spec}}(k)] \cdot [\mathop{\mathrm{Spec}}(k)] = [\mathop{\mathrm{Spec}}(k)]$ in the Chow ring of $\mathop{\mathrm{Spec}}(k)$ we conclude that $\gamma ([\mathop{\mathrm{Spec}}(k)) \cup \gamma ([\mathop{\mathrm{Spec}}(k)]) = \gamma ([\mathop{\mathrm{Spec}}(k)])$ by axiom (C)(c). Since we already know that $\gamma ([\mathop{\mathrm{Spec}}(k)])$ is nonzero we conclude that it has to be equal to $1$. Finally, we have $\int _{\mathop{\mathrm{Spec}}(k)} 1 = 1$ since $\int _{\mathop{\mathrm{Spec}}(k)} \gamma ([\mathop{\mathrm{Spec}}(k)]) = 1$ by axiom (C)(d). $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)