The Stacks project

Remark 49.13.1. Let $Y \to X$ be a locally quasi-finite syntomic morphism of schemes. What does the pair $(\det (\mathop{N\! L}\nolimits _{Y/X}), \delta (\mathop{N\! L}\nolimits _{Y/X}))$ look like locally? Choose affine opens $V = \mathop{\mathrm{Spec}}(B) \subset Y$, $U = \mathop{\mathrm{Spec}}(A) \subset X$ with $f(V) \subset U$ and an integer $n$ and $f_1, \ldots , f_ n \in A[x_1, \ldots , x_ n]$ such that $B = A[x_1, \ldots , x_ n]/(f_1, \ldots , f_ n)$. Then

\[ \mathop{N\! L}\nolimits _{B/A} = \left( (f_1, \ldots , f_ n)/(f_1, \ldots , f_ n)^2 \longrightarrow \bigoplus \nolimits _{i = 1, \ldots , n} B \text{d} x_ i\right) \]

and $(f_1, \ldots , f_ n)/(f_1, \ldots , f_ n)^2$ is free with generators the classes $\overline{f}_ i$. See proof of Lemma 49.10.1. Thus $\det (L_{B/A})$ is free on the generator

\[ \text{d}x_1 \wedge \ldots \wedge \text{d}x_ n \otimes (\overline{f}_1 \wedge \ldots \wedge \overline{f}_ n)^{\otimes -1} \]

and the section $\delta (\mathop{N\! L}\nolimits _{B/A})$ is the element

\[ \delta (\mathop{N\! L}\nolimits _{B/A}) = \det (\partial f_ j/ \partial x_ i) \cdot \text{d}x_1 \wedge \ldots \wedge \text{d}x_ n \otimes (\overline{f}_1 \wedge \ldots \wedge \overline{f}_ n)^{\otimes -1} \]

by definition.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FKC. Beware of the difference between the letter 'O' and the digit '0'.