Remark 49.13.1. Let Y \to X be a locally quasi-finite syntomic morphism of schemes. What does the pair (\det (\mathop{N\! L}\nolimits _{Y/X}), \delta (\mathop{N\! L}\nolimits _{Y/X})) look like locally? Choose affine opens V = \mathop{\mathrm{Spec}}(B) \subset Y, U = \mathop{\mathrm{Spec}}(A) \subset X with f(V) \subset U and an integer n and f_1, \ldots , f_ n \in A[x_1, \ldots , x_ n] such that B = A[x_1, \ldots , x_ n]/(f_1, \ldots , f_ n). Then
and (f_1, \ldots , f_ n)/(f_1, \ldots , f_ n)^2 is free with generators the classes \overline{f}_ i. See proof of Lemma 49.10.1. Thus \det (L_{B/A}) is free on the generator
and the section \delta (\mathop{N\! L}\nolimits _{B/A}) is the element
by definition.
Comments (0)