The Stacks project

Remark 14.23.7. In the situation of Lemma 14.23.6 the subcomplex $D(U) \subset s(U)$ can also be defined as the subcomplex with terms

\[ D(U)_ n = \mathop{\mathrm{Im}}\left( \bigoplus \nolimits _{\varphi : [n] \to [m]\text{ surjective}, \ m < n} U_ m \xrightarrow {\bigoplus U(\varphi )} U_ n\right) \]

Namely, since $U_ m$ is the direct sum of the subobject $N(U_ m)$ and the images of $N(U_ k)$ for surjections $[m] \to [k]$ with $k < m$ this is clearly the same as the definition of $D(U)_ n$ given in the proof of Lemma 14.23.6. Thus we see that if $U$ is a simplicial abelian group, then elements of $D(U)_ n$ are exactly the sums of degenerate $n$-simplices.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FKI. Beware of the difference between the letter 'O' and the digit '0'.