Processing math: 100%

The Stacks project

Example 49.11.2. Let d \geq 1 be an integer. Consider variables a_{ij}^ l for 1 \leq i, j, l \leq d and denote

A_ d = \mathbf{Z}[a_{ij}^ k]/J

where J is the ideal generated by the elements

\left\{ \begin{matrix} \sum _ l a_{ij}^ la_{lk}^ m - \sum _ l a_{il}^ ma_{jk}^ l & \forall i, j, k, m \\ a_{ij}^ k - a_{ji}^ k & \forall i, j, k \\ a_{i1}^ j - \delta _{ij} & \forall i, j \end{matrix} \right.

where \delta _{ij} indices the Kronecker delta function. We define an A_ d-algebra B_ d as follows: as an A_ d-module we set

B_ d = A_ d e_1 \oplus \ldots \oplus A_ d e_ d

The algebra structure is given by A_ d \to B_ d mapping 1 to e_1. The multiplication on B_ d is the A_ d-bilinar map

m : B_ d \times B_ d \longrightarrow B_ d, \quad m(e_ i, e_ j) = \sum a_{ij}^ k e_ k

It is straightforward to check that the relations given above exactly force this to be an A_ d-algebra structure. The morphism

\pi _ d : Y_ d = \mathop{\mathrm{Spec}}(B_ d) \longrightarrow \mathop{\mathrm{Spec}}(A_ d) = X_ d

is the “universal” finite free morphism of rank d.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.