The Stacks project

Remark 20.25.3. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{U} : X = \bigcup _{i \in I} U_ i$ be an open covering. Let $\mathcal{F}^\bullet $ be a bounded below complex of $\mathcal{O}_ X$-modules. Let $b$ be an integer. We claim there is a commutative diagram

\[ \xymatrix{ \text{Tot}(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}^\bullet ))[b] \ar[r] \ar[d]_\gamma & R\Gamma (X, \mathcal{F}^\bullet )[b] \ar[d] \\ \text{Tot}(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}^\bullet [b])) \ar[r] & R\Gamma (X, \mathcal{F}^\bullet [b]) } \]

in the derived category where the map $\gamma $ is the map on complexes constructed in Homology, Remark 12.18.5. This makes sense because the double complex $\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}^\bullet [b])$ is clearly the same as the double complex $\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}^\bullet )[0, b]$ introduced in Homology, Remark 12.18.5. To check that the diagram commutes, we may choose an injective resolution $\mathcal{F}^\bullet \to \mathcal{I}^\bullet $ as in the proof of Lemma 20.25.1. Chasing diagrams, we see that it suffices to check the diagram commutes when we replace $\mathcal{F}^\bullet $ by $\mathcal{I}^\bullet $. Then we consider the extended diagram

\[ \xymatrix{ \Gamma (X, \mathcal{I}^\bullet )[b] \ar[r] \ar[d] & \text{Tot}(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{I}^\bullet ))[b] \ar[r] \ar[d]_\gamma & R\Gamma (X, \mathcal{I}^\bullet )[b] \ar[d] \\ \Gamma (X, \mathcal{I}^\bullet [b]) \ar[r] & \text{Tot}(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{I}^\bullet [b])) \ar[r] & R\Gamma (X, \mathcal{I}^\bullet [b]) } \]

where the left horizontal arrows are ( Since in this case the horizonal arrows are isomorphisms in the derived category (see proof of Lemma 20.25.1) it suffices to show that the left square commutes. This is true because the map $\gamma $ uses the sign $1$ on the summands $\check{\mathcal{C}}^0(\mathcal{U}, \mathcal{I}^{q + b})$, see formula in Homology, Remark 12.18.5.

Comments (0)

There are also:

  • 4 comment(s) on Section 20.25: Čech cohomology of complexes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FLI. Beware of the difference between the letter 'O' and the digit '0'.