Lemma 20.25.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{U} : X = \bigcup _{i \in I} U_ i$ be an open covering. For a bounded below complex $\mathcal{F}^\bullet $ of $\mathcal{O}_ X$-modules there is a canonical map
\[ \text{Tot}(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}^\bullet )) \longrightarrow R\Gamma (X, \mathcal{F}^\bullet ) \]
functorial in $\mathcal{F}^\bullet $ and compatible with (20.25.0.1) and (20.25.0.2). There is a spectral sequence $(E_ r, d_ r)_{r \geq 0}$ with
\[ E_2^{p, q} = H^ p(\text{Tot}(\check{\mathcal{C}}^\bullet (\mathcal{U}, \underline{H}^ q(\mathcal{F}^\bullet ))) \]
converging to $H^{p + q}(X, \mathcal{F}^\bullet )$.
Proof.
Let ${\mathcal I}^\bullet $ be a bounded below complex of injectives. The map (20.25.0.1) for $\mathcal{I}^\bullet $ is a map $\Gamma (X, {\mathcal I}^\bullet ) \to \text{Tot}(\check{\mathcal{C}}^\bullet ({\mathcal U}, {\mathcal I}^\bullet ))$. This is a quasi-isomorphism of complexes of abelian groups as follows from Homology, Lemma 12.25.4 applied to the double complex $\check{\mathcal{C}}^\bullet ({\mathcal U}, {\mathcal I}^\bullet )$ using Lemma 20.11.1. Suppose ${\mathcal F}^\bullet \to {\mathcal I}^\bullet $ is a quasi-isomorphism of ${\mathcal F}^\bullet $ into a bounded below complex of injectives. Since $R\Gamma (X, {\mathcal F}^\bullet )$ is represented by the complex $\Gamma (X, {\mathcal I}^\bullet )$ we obtain the map of the lemma using
\[ \text{Tot}(\check{\mathcal{C}}^\bullet ({\mathcal U}, {\mathcal F}^\bullet )) \longrightarrow \text{Tot}(\check{\mathcal{C}}^\bullet ({\mathcal U}, {\mathcal I}^\bullet )). \]
We omit the verification of functoriality and compatibilities. To construct the spectral sequence of the lemma, choose a Cartan-Eilenberg resolution $\mathcal{F}^\bullet \to \mathcal{I}^{\bullet , \bullet }$, see Derived Categories, Lemma 13.21.2. In this case $\mathcal{F}^\bullet \to \text{Tot}(\mathcal{I}^{\bullet , \bullet })$ is an injective resolution and hence
\[ \text{Tot}(\check{\mathcal{C}}^\bullet ({\mathcal U}, \text{Tot}({\mathcal I}^{\bullet , \bullet }))) \]
computes $R\Gamma (X, \mathcal{F}^\bullet )$ as we've seen above. By Homology, Remark 12.18.4 we can view this as the total complex associated to the triple complex $\check{\mathcal{C}}^\bullet ({\mathcal U}, {\mathcal I}^{\bullet , \bullet })$ hence, using the same remark we can view it as the total complex associate to the double complex $A^{\bullet , \bullet }$ with terms
\[ A^{n, m} = \bigoplus \nolimits _{p + q = n} \check{\mathcal{C}}^ p({\mathcal U}, \mathcal{I}^{q, m}) \]
Since $\mathcal{I}^{q, \bullet }$ is an injective resolution of $\mathcal{F}^ q$ we can apply the first spectral sequence associated to $A^{\bullet , \bullet }$ (Homology, Lemma 12.25.1) to get a spectral sequence with
\[ E_1^{n, m} = \bigoplus \nolimits _{p + q = n} \check{\mathcal{C}}^ p(\mathcal{U}, \underline{H}^ m(\mathcal{F}^ q)) \]
which is the $n$th term of the complex $\text{Tot}(\check{\mathcal{C}}^\bullet (\mathcal{U}, \underline{H}^ m(\mathcal{F}^\bullet ))$. Hence we obtain $E_2$ terms as described in the lemma. Convergence by Homology, Lemma 12.25.3.
$\square$
Comments (3)
Comment #3217 by Ingo Blechschmidt on
Comment #3319 by Johan on
Comment #4558 by Johan on
There are also: