The Stacks project

Lemma 20.29.5. Let $f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces. Let $\mathcal{F}^\bullet $ be a filtered complex of $\mathcal{O}_ X$-modules. There exists a canonical spectral sequence $(E_ r, \text{d}_ r)_{r \geq 1}$ of bigraded $\mathcal{O}_ Y$-modules with $d_ r$ of bidegree $(r, -r + 1)$ and

\[ E_1^{p, q} = R^{p + q}f_*\text{gr}^ p\mathcal{F}^\bullet \]

If for every $n$ we have

\[ R^ nf_*F^ p\mathcal{F}^\bullet = 0 \text{ for }p \gg 0 \quad \text{and}\quad R^ nf_*F^ p\mathcal{F}^\bullet = R^ nf_*\mathcal{F}^\bullet \text{ for }p \ll 0 \]

then the spectral sequence is bounded and converges to $Rf_*\mathcal{F}^\bullet $.

Proof. The proof is exactly the same as the proof of Lemma 20.29.1. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FLL. Beware of the difference between the letter 'O' and the digit '0'.