Example 20.48.2. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}^\bullet$ be a locally bounded complex of $\mathcal{O}_ X$-modules such that each $\mathcal{F}^ n$ is locally a direct summand of a finite free $\mathcal{O}_ X$-module. In other words, there is an open covering $X = \bigcup U_ i$ such that $\mathcal{F}^\bullet |_{U_ i}$ is a strictly perfect complex. Consider the complex

$\mathcal{G}^\bullet = \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{F}^\bullet , \mathcal{O}_ X)$

as in Section 20.39. Let

$\eta : \mathcal{O}_ X \to \text{Tot}(\mathcal{F}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{G}^\bullet ) \quad \text{and}\quad \epsilon : \text{Tot}(\mathcal{G}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{F}^\bullet ) \to \mathcal{O}_ X$

be $\eta = \sum \eta _ n$ and $\epsilon = \sum \epsilon _ n$ where $\eta _ n : \mathcal{O}_ X \to \mathcal{F}^ n \otimes _{\mathcal{O}_ X} \mathcal{G}^{-n}$ and $\epsilon _ n : \mathcal{G}^{-n} \otimes _{\mathcal{O}_ X} \mathcal{F}^ n \to \mathcal{O}_ X$ are as in Modules, Example 17.18.1. Then $\mathcal{G}^\bullet , \eta , \epsilon$ is a left dual for $\mathcal{F}^\bullet$ as in Categories, Definition 4.43.5. We omit the verification that $(1 \otimes \epsilon ) \circ (\eta \otimes 1) = \text{id}_{\mathcal{F}^\bullet }$ and $(\epsilon \otimes 1) \circ (1 \otimes \eta ) = \text{id}_{\mathcal{G}^\bullet }$. Please compare with More on Algebra, Lemma 15.72.2.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).