Example 17.18.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module which is locally a direct summand of a finite free $\mathcal{O}_ X$-module. Then the map
is an isomorphism. Namely, this is a local question, it is true if $\mathcal{F}$ is finite free, and it holds for any summand of a module for which it is true. Denote
the map sending $1$ to the section corresponding to $\text{id}_\mathcal {F}$ under the isomorphism above. Denote
the evaluation map. Then $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{O}_ X), \eta , \epsilon $ is a left dual for $\mathcal{F}$ as in Categories, Definition 4.43.5. We omit the verification that $(1 \otimes \epsilon ) \circ (\eta \otimes 1) = \text{id}_\mathcal {F}$ and $(\epsilon \otimes 1) \circ (1 \otimes \eta ) = \text{id}_{\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{O}_ X)}$.
Comments (0)