The Stacks project

Example 17.18.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module which is locally a direct summand of a finite free $\mathcal{O}_ X$-module. Then the map

\[ \mathcal{F} \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{O}_ X) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{F}) \]

is an isomorphism. Namely, this is a local question, it is true if $\mathcal{F}$ is finite free, and it holds for any summand of a module for which it is true. Denote

\[ \eta : \mathcal{O}_ X \longrightarrow \mathcal{F} \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{O}_ X) \]

the map sending $1$ to the section corresponding to $\text{id}_\mathcal {F}$ under the isomorphism above. Denote

\[ \epsilon : \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{O}_ X) \otimes _{\mathcal{O}_ X} \mathcal{F} \longrightarrow \mathcal{O}_ X \]

the evaluation map. Then $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{O}_ X), \eta , \epsilon $ is a left dual for $\mathcal{F}$ as in Categories, Definition 4.43.5. We omit the verification that $(1 \otimes \epsilon ) \circ (\eta \otimes 1) = \text{id}_\mathcal {F}$ and $(\epsilon \otimes 1) \circ (1 \otimes \eta ) = \text{id}_{\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{O}_ X)}$.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FNV. Beware of the difference between the letter 'O' and the digit '0'.