The Stacks project

Lemma 17.18.2. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module. Let $\mathcal{G}, \eta , \epsilon $ be a left dual of $\mathcal{F}$ in the monoidal category of $\mathcal{O}_ X$-modules, see Categories, Definition 4.43.5. Then

  1. $\mathcal{F}$ is locally a direct summand of a finite free $\mathcal{O}_ X$-module,

  2. the map $e : \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{O}_ X) \to \mathcal{G}$ sending a local section $\lambda $ to $(\lambda \otimes 1)(\eta )$ is an isomorphism,

  3. we have $\epsilon (f, g) = e^{-1}(g)(f)$ for local sections $f$ and $g$ of $\mathcal{F}$ and $\mathcal{G}$.

Proof. The assumptions mean that

\[ \mathcal{F} \xrightarrow {\eta \otimes 1} \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{G} \otimes _{\mathcal{O}_ X} \mathcal{F} \xrightarrow {1 \otimes \epsilon } \mathcal{F} \quad \text{and}\quad \mathcal{G} \xrightarrow {1 \otimes \eta } \mathcal{G} \otimes _{\mathcal{O}_ X} \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{G} \xrightarrow {\epsilon \otimes 1} \mathcal{G} \]

are the identity map. Let $x \in X$. We can find an open neighbourhood $U$ of $x$, a finite number of sections $f_1, \ldots , f_ n$ and $g_1, \ldots , g_ n$ of $\mathcal{F}$ and $\mathcal{G}$ over $U$ such that $\eta (1) = \sum f_ i g_ i$. Denote

\[ \mathcal{O}_ U^{\oplus n} \to \mathcal{F}|_ U \]

the map sending the $i$th basis vector to $f_ i$. Then we can factor the map $\eta |_ U$ over a map $\tilde\eta : \mathcal{O}_ U \to \mathcal{O}_ U^{\oplus n} \otimes _{\mathcal{O}_ U} \mathcal{G}|_ U$. We obtain a commutative diagram

\[ \xymatrix{ \mathcal{F}|_ U \ar[rr]_-{\eta \otimes 1} \ar[rrd]_-{\tilde\eta \otimes 1} & & \mathcal{F}|_ U \otimes \mathcal{G}|_ U \otimes \mathcal{F}|_ U \ar[r]_-{1 \otimes \epsilon } & \mathcal{F}|_ U \\ & & \mathcal{O}_ U^{\oplus n} \otimes \mathcal{G}|_ U \otimes \mathcal{F}|_ U \ar[u] \ar[r]^-{1 \otimes \epsilon } & \mathcal{O}_ U^{\oplus n} \ar[u] } \]

This shows that the identity on $\mathcal{F}$ locally on $X$ factors through a finite free module. This proves (1). Part (2) follows from Categories, Lemma 4.43.6 and its proof. Part (3) follows from the first equality of the proof. You can also deduce (2) and (3) from the uniqueness of left duals (Categories, Remark 4.43.7) and the construction of the left dual in Example 17.18.1. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FNW. Beware of the difference between the letter 'O' and the digit '0'.