Processing math: 100%

The Stacks project

Example 21.48.6. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let K be a perfect object of D(\mathcal{O}). Set K^\vee = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, \mathcal{O}) as in Lemma 21.48.4. Then the map

K \otimes _\mathcal {O}^\mathbf {L} K^\vee \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, K)

is an isomorphism (by the lemma). Denote

\eta : \mathcal{O} \longrightarrow K \otimes _\mathcal {O}^\mathbf {L} K^\vee

the map sending 1 to the section corresponding to \text{id}_ K under the isomorphism above. Denote

\epsilon : K^\vee \otimes _\mathcal {O}^\mathbf {L} K \longrightarrow \mathcal{O}

the evaluation map (to construct it you can use Lemma 21.35.6 for example). Then K^\vee , \eta , \epsilon is a left dual for K as in Categories, Definition 4.43.5. We omit the verification that (1 \otimes \epsilon ) \circ (\eta \otimes 1) = \text{id}_ K and (\epsilon \otimes 1) \circ (1 \otimes \eta ) = \text{id}_{K^\vee }.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.