Lemma 22.13.3. In the situation above, let $A$ be a differential graded $R$-algebra. To give a right $A$-module structure on $M$ is the same thing as giving a homomorphism $\tau : A \to E^{opp}$ of differential graded $R$-algebras.
Proof. See discussion above and note that the construction of $\tau $ from the multiplication map $M^ n \times A^ m \to M^{n + m}$ uses signs. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)