Remark 22.13.5. Let $R$ be a ring. Let $A$ be a differential graded $R$-algebra. Let $M$ be a left differential graded $A$-module. Let $N^\bullet $ be a complex of $R$-modules. The constructions above produce a right differential graded $A$-module $\mathop{\mathrm{Hom}}\nolimits (M, N^\bullet )$ and then a leftt differential graded $A$-module $\mathop{\mathrm{Hom}}\nolimits (\mathop{\mathrm{Hom}}\nolimits (M, N^\bullet ), N^\bullet )$. We claim there is an evaluation map
in the category of left differential graded $A$-modules. To define it, by Lemma 22.13.2 it suffices to construct an $A$-bilinear pairing
compatible with grading and differentials. For this we take
We leave it to the reader to verify this is compatible with grading, differentials, and $A$-bilinear. The map $ev$ on underlying complexes of $R$-modules is More on Algebra, Item (17).
Comments (0)