Lemma 24.17.3. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let \mathcal{A} and \mathcal{B} be a sheaves of differential graded algebras on (\mathcal{C}, \mathcal{O}). Let \mathcal{M} be a right differential graded \mathcal{A}-module. Let \mathcal{N} be a differential graded (\mathcal{A}, \mathcal{B})-bimodule. Let \mathcal{L} be a right differential graded \mathcal{B}-module. With conventions as above we have
\mathop{\mathrm{Hom}}\nolimits _{\textit{Mod}^{dg}(\mathcal{B}, \text{d})}( \mathcal{M} \otimes _\mathcal {A} \mathcal{N}, \mathcal{L}) = \mathop{\mathrm{Hom}}\nolimits _{\textit{Mod}^{dg}(\mathcal{A}, \text{d})}( \mathcal{M}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {B}^{dg}(\mathcal{N}, \mathcal{L}))
and
\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {B}^{dg}( \mathcal{M} \otimes _\mathcal {A} \mathcal{N}, \mathcal{L}) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {A}^{dg}( \mathcal{M}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {B}^{dg}(\mathcal{N}, \mathcal{L}))
functorially in \mathcal{M}, \mathcal{N}, \mathcal{L}.
Comments (0)