Lemma 24.17.3. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{A}$ and $\mathcal{B}$ be a sheaves of differential graded algebras on $(\mathcal{C}, \mathcal{O})$. Let $\mathcal{M}$ be a right differential graded $\mathcal{A}$-module. Let $\mathcal{N}$ be a differential graded $(\mathcal{A}, \mathcal{B})$-bimodule. Let $\mathcal{L}$ be a right differential graded $\mathcal{B}$-module. With conventions as above we have

\[ \mathop{\mathrm{Hom}}\nolimits _{\textit{Mod}^{dg}(\mathcal{B}, \text{d})}( \mathcal{M} \otimes _\mathcal {A} \mathcal{N}, \mathcal{L}) = \mathop{\mathrm{Hom}}\nolimits _{\textit{Mod}^{dg}(\mathcal{A}, \text{d})}( \mathcal{M}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {B}^{dg}(\mathcal{N}, \mathcal{L})) \]

and

\[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {B}^{dg}( \mathcal{M} \otimes _\mathcal {A} \mathcal{N}, \mathcal{L}) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {A}^{dg}( \mathcal{M}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {B}^{dg}(\mathcal{N}, \mathcal{L})) \]

functorially in $\mathcal{M}$, $\mathcal{N}$, $\mathcal{L}$.

## Comments (0)