Lemma 24.22.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{A}$ be a sheaf of differential graded algebras on $(\mathcal{C}, \mathcal{O})$. The differential graded category $\textit{Mod}^{dg}(\mathcal{A}, \text{d})$ satisfies axioms (A) and (B) of Differential Graded Algebra, Section 22.27.

Proof. Suppose given differential graded $\mathcal{A}$-modules $\mathcal{M}$ and $\mathcal{N}$. Consider the differential graded $\mathcal{A}$-module $\mathcal{M} \oplus \mathcal{N}$ defined in the obvious manner. Then the coprojections $i : \mathcal{M} \to \mathcal{M} \oplus \mathcal{N}$ and $j : \mathcal{N} \to \mathcal{M} \oplus \mathcal{N}$ and the projections $p : \mathcal{M} \oplus \mathcal{N} \to \mathcal{N}$ and $q : \mathcal{M} \oplus \mathcal{N} \to \mathcal{M}$ are morphisms of differential graded $\mathcal{A}$-modules. Hence $i, j, p, q$ are homogeneous of degree $0$ and closed, i.e., $\text{d}(i) = 0$, etc. Thus this direct sum is a differential graded sum in the sense of Differential Graded Algebra, Definition 22.26.4. This proves axiom (A).

Axiom (B) was shown in Section 24.20. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).