Lemma 24.29.6. Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ and $(g, g^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}') \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}''), \mathcal{O}'')$ be morphisms of ringed topoi. Let $\mathcal{A}$, $\mathcal{A}'$, and $\mathcal{A}''$ be a differential graded $\mathcal{O}$-algebra, $\mathcal{O}'$-algebra, and $\mathcal{O}''$-algebra. Let $\varphi : \mathcal{A}' \to f_*\mathcal{A}$ and $\varphi ' : \mathcal{A}'' \to g_*\mathcal{A}'$ be a homomorphism of differential graded $\mathcal{O}'$-algebras and $\mathcal{O}''$-algebras. Then we have $R(g \circ f)_* = Rg_* \circ Rf_* : D(\mathcal{A}, \text{d}) \to D(\mathcal{A}'', \text{d})$.

Proof. Follows from Lemmas 24.28.4 and 24.29.4 and uniqueness of adjoints. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).