Lemma 24.28.4. Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ and $(g, g^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}') \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}''), \mathcal{O}'')$ be morphisms of ringed topoi. Let $\mathcal{A}$, $\mathcal{A}'$, and $\mathcal{A}''$ be a differential graded $\mathcal{O}$-algebra, $\mathcal{O}'$-algebra, and $\mathcal{O}''$-algebra. Let $\varphi : \mathcal{A}' \to f_*\mathcal{A}$ and $\varphi ' : \mathcal{A}'' \to g_*\mathcal{A}'$ be a homomorphism of differential graded $\mathcal{O}'$-algebras and $\mathcal{O}''$-algebras. Then we have $L(g \circ f)^* = Lf^* \circ Lg^* : D(\mathcal{A}'', \text{d}) \to D(\mathcal{A}, \text{d})$.
Proof. Immediate from the fact that we can compute these functors by representing objects by good differential graded modules and because $f^*\mathcal{P}$ is a good differential graded $\mathcal{A}'$-module of $\mathcal{P}$ is a good differential graded $\mathcal{A}$-module. $\square$
Comments (0)