Lemma 24.28.3. In Lemma 24.28.1 the functor $D(\mathcal{B}, \text{d}) \to D(\mathcal{A}', \text{d})$ is equal to $\mathcal{M} \mapsto Lf^*\mathcal{M} \otimes _\mathcal {A}^\mathbf {L} \mathcal{N}$.
Proof. Immediate from the fact that we can compute these functors by representing objects by good differential graded modules and because $f^*\mathcal{P}$ is a good differential graded $\mathcal{A}$-module if $\mathcal{P}$ is a good differential graded $\mathcal{B}$-module. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)