The Stacks project

24.28 Derived pullback

Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi. Let $\mathcal{A}$ be a differential graded $\mathcal{O}_\mathcal {C}$-algebra. Let $\mathcal{B}$ be a differential graded $\mathcal{O}_\mathcal {D}$-algebra. Suppose we are given a map

\[ \varphi : f^{-1}\mathcal{B} \to \mathcal{A} \]

of differential graded $f^{-1}\mathcal{O}_\mathcal {D}$-algebras. By the adjunction of restriction and extension of scalars, this is the same thing as a map $\varphi : f^*\mathcal{B} \to \mathcal{A}$ of differential graded $\mathcal{O}_\mathcal {C}$-algebras or equivalently $\varphi $ can be viewed as a map

\[ \varphi : \mathcal{B} \to f_*\mathcal{A} \]

of differential graded $\mathcal{O}_\mathcal {D}$-algebras. See Remark 24.12.2.

In addition to the above, let $\mathcal{A}'$ be a second differential graded $\mathcal{O}_\mathcal {C}$-algebra and let $\mathcal{N}$ be a differential graded $(\mathcal{A}, \mathcal{A}')$-bimodule. In this setting we can consider the functor

\[ \textit{Mod}(\mathcal{B}, \text{d}) \longrightarrow \textit{Mod}(\mathcal{A}', \text{d}),\quad \mathcal{M} \longmapsto f^*\mathcal{M} \otimes _{\mathcal{A}} \mathcal{N} \]

Observe that this extends to a functor

\[ \textit{Mod}^{dg}(\mathcal{B}, \text{d}) \longrightarrow \textit{Mod}^{dg}(\mathcal{A}', \text{d}),\quad \mathcal{M} \longmapsto f^*\mathcal{M} \otimes _{\mathcal{A}} \mathcal{N} \]

of differential graded categories by the discussion in Sections 24.18 and 24.17. It follows formally that we also obtain an exact functor

24.28.0.1
\begin{equation} \label{sdga-equation-pullback} K(\textit{Mod}(\mathcal{B}, \text{d})) \longrightarrow K(\textit{Mod}(\mathcal{A}', \text{d})),\quad \mathcal{M} \longmapsto f^*\mathcal{M} \otimes _{\mathcal{A}} \mathcal{N} \end{equation}

of triangulated categories.

Lemma 24.28.1. In the situation above, the functor (24.28.0.1) composed with the localization functor $K(\textit{Mod}(\mathcal{A}', \text{d})) \to D(\mathcal{A}', \text{d})$ has a left derived extension $D(\mathcal{B}, \text{d}) \to D(\mathcal{A}', \text{d})$ whose value on a good right differential graded $\mathcal{B}$-module $\mathcal{P}$ is $f^*\mathcal{P} \otimes _\mathcal {A} \mathcal{N}$.

Proof. Recall that for any (right) differential graded $\mathcal{B}$-module $\mathcal{M}$ there exists a quasi-isomorphism $\mathcal{P} \to \mathcal{M}$ with $\mathcal{P}$ a good differential graded $\mathcal{B}$-module. See Lemma 24.23.7. Hence by Derived Categories, Lemma 13.14.15 it suffices to show that given a quasi-isomorphism $\mathcal{P} \to \mathcal{P}'$ of good differential graded $\mathcal{B}$-modules the induced map

\[ f^*\mathcal{P} \otimes _\mathcal {A} \mathcal{N} \longrightarrow f^*\mathcal{P}' \otimes _\mathcal {A} \mathcal{N} \]

is a quasi-isomorphism. The cone $\mathcal{P}''$ on $\mathcal{P} \to \mathcal{P}'$ is a good differential graded $\mathcal{A}$-module by Lemma 24.23.2. Since we have a distinguished triangle

\[ \mathcal{P} \to \mathcal{P}' \to \mathcal{P}'' \to \mathcal{P}[1] \]

in $K(\textit{Mod}(\mathcal{B}, \text{d}))$ we obtain a distinguished triangle

\[ f^*\mathcal{P} \otimes _\mathcal {A} \mathcal{N} \to f^*\mathcal{P}' \otimes _\mathcal {A} \mathcal{N} \to f^*\mathcal{P}'' \otimes _\mathcal {A} \mathcal{N} \to f^*\mathcal{P}[1] \otimes _\mathcal {A} \mathcal{N} \]

in $K(\textit{Mod}(\mathcal{A}', \text{d}))$. By Lemma 24.23.8 the differential graded module $f^*\mathcal{P}'' \otimes _\mathcal {A} \mathcal{N}$ is acyclic and the proof is complete. $\square$

Definition 24.28.2. Derived tensor product and derived pullback.

  1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{A}$, $\mathcal{B}$ be differential graded $\mathcal{O}$-algebras. Let $\mathcal{N}$ be a differential graded $(\mathcal{A}, \mathcal{B})$-bimodule. The functor $D(\mathcal{A}, \text{d}) \to D(\mathcal{B}, \text{d})$ constructed in Lemma 24.28.1 is called the derived tensor product and denoted $- \otimes _\mathcal {A}^\mathbf {L} \mathcal{N}$.

  2. Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi. Let $\mathcal{A}$ be a differential graded $\mathcal{O}_\mathcal {C}$-algebra. Let $\mathcal{B}$ be a differential graded $\mathcal{O}_\mathcal {D}$-algebra. Let $\varphi : \mathcal{B} \to f_*\mathcal{A}$ be a homomorphism of differential graded $\mathcal{O}_\mathcal {D}$-algebras. The functor $D(\mathcal{B}, \text{d}) \to D(\mathcal{A}, \text{d})$ constructed in Lemma 24.28.1 is called derived pullback and denote $Lf^*$.

With this language in place we can express some obvious compatibilities.

Lemma 24.28.3. In Lemma 24.28.1 the functor $D(\mathcal{B}, \text{d}) \to D(\mathcal{A}', \text{d})$ is equal to $\mathcal{M} \mapsto Lf^*\mathcal{M} \otimes _\mathcal {A}^\mathbf {L} \mathcal{N}$.

Proof. Immediate from the fact that we can compute these functors by representing objects by good differential graded modules and because $f^*\mathcal{P}$ is a good differential graded $\mathcal{A}$-module if $\mathcal{P}$ is a good differential graded $\mathcal{B}$-module. $\square$

Lemma 24.28.4. Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ and $(g, g^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}') \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}''), \mathcal{O}'')$ be morphisms of ringed topoi. Let $\mathcal{A}$, $\mathcal{A}'$, and $\mathcal{A}''$ be a differential graded $\mathcal{O}$-algebra, $\mathcal{O}'$-algebra, and $\mathcal{O}''$-algebra. Let $\varphi : \mathcal{A}' \to f_*\mathcal{A}$ and $\varphi ' : \mathcal{A}'' \to g_*\mathcal{A}'$ be a homomorphism of differential graded $\mathcal{O}'$-algebras and $\mathcal{O}''$-algebras. Then we have $L(g \circ f)^* = Lf^* \circ Lg^* : D(\mathcal{A}'', \text{d}) \to D(\mathcal{A}, \text{d})$.

Proof. Immediate from the fact that we can compute these functors by representing objects by good differential graded modules and because $f^*\mathcal{P}$ is a good differential graded $\mathcal{A}'$-module of $\mathcal{P}$ is a good differential graded $\mathcal{A}$-module. $\square$

Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{A}$, $\mathcal{B}$ be differential graded $\mathcal{O}$-algebras. Let $\mathcal{N} \to \mathcal{N}'$ be a homomorphism of differential graded $(\mathcal{A}, \mathcal{B})$-bimodules. Then we obtain canonical maps

\[ t : \mathcal{M} \otimes _\mathcal {A}^\mathbf {L} \mathcal{N} \longrightarrow \mathcal{M} \otimes _\mathcal {A}^\mathbf {L} \mathcal{N}' \]

functorial in $\mathcal{M}$ in $D(\mathcal{A}, \text{d})$ which define a natural transformation between exact functors $D(\mathcal{A}, \text{d}) \to D(\mathcal{B}, \text{d})$ of triangulated categories. The value of $t$ on a good differential graded $\mathcal{A}$-module $\mathcal{P}$ is the obvious map

\[ \mathcal{P} \otimes _\mathcal {A}^\mathbf {L} \mathcal{N} = \mathcal{P} \otimes _\mathcal {A} \mathcal{N} \longrightarrow \mathcal{P} \otimes _\mathcal {A} \mathcal{N}' = \mathcal{P} \otimes _\mathcal {A}^\mathbf {L} \mathcal{N}' \]

Lemma 24.28.5. In the situation above, if $\mathcal{N} \to \mathcal{N}'$ is an isomorphism on cohomology sheaves, then $t$ is an isomorphism of functors $(- \otimes _\mathcal {A}^\mathbf {L} \mathcal{N}) \to (- \otimes _\mathcal {A}^\mathbf {L} \mathcal{N}')$.

Proof. It is enough to show that $\mathcal{P} \otimes _\mathcal {A} \mathcal{N} \to \mathcal{P} \otimes _\mathcal {A} \mathcal{N}'$ is an isomorphism on cohomology sheaves for any good differential graded $\mathcal{A}$-module $\mathcal{P}$. To do this, let $\mathcal{N}''$ be the cone on the map $\mathcal{N} \to \mathcal{N}'$ as a left differential graded $\mathcal{A}$-module, see Definition 24.22.2. (To be sure, $\mathcal{N}''$ is a bimodule too but we don't need this.) By functoriality of the tensor construction (it is a functor of differential graded categories) we see that $\mathcal{P} \otimes _\mathcal {A} \mathcal{N}''$ is the cone (as a complex of $\mathcal{O}$-modules) on the map $\mathcal{P} \otimes _\mathcal {A} \mathcal{N} \to \mathcal{P} \otimes _\mathcal {A} \mathcal{N}'$. Hence it suffices to show that $\mathcal{P} \otimes _\mathcal {A} \mathcal{N}''$ is acyclic. This follows from the fact that $\mathcal{P}$ is good and the fact that $\mathcal{N}''$ is acyclic as a cone on a quasi-isomorphism. $\square$

Lemma 24.28.6. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{A}$, $\mathcal{B}$ be differential graded $\mathcal{O}$-algebras. Let $\mathcal{N}$ be a differential graded $(\mathcal{A}, \mathcal{B})$-bimodule. If $\mathcal{N}$ is good as a left differential graded $\mathcal{A}$-module, then we have $\mathcal{M} \otimes _\mathcal {A}^\mathbf {L} \mathcal{N} = \mathcal{M} \otimes _\mathcal {A} \mathcal{N}$ for all differential graded $\mathcal{A}$-modules $\mathcal{M}$.

Proof. Let $\mathcal{P} \to \mathcal{M}$ be a quasi-isomorphism where $\mathcal{P}$ is a good (right) differential graded $\mathcal{A}$-module. To prove the lemma we have to show that $\mathcal{P} \otimes _\mathcal {A} \mathcal{N} \to \mathcal{M} \otimes _\mathcal {A} \mathcal{N}$ is a quasi-isomorphism. The cone $C$ on the map $\mathcal{P} \to \mathcal{M}$ is an acyclic right differential graded $\mathcal{A}$-module. Hence $C \otimes _\mathcal {A} \mathcal{N}$ is acyclic as $\mathcal{N}$ is assumed good as a left differential graded $\mathcal{A}$-module. Since $C \otimes _\mathcal {A} \mathcal{N}$ is the cone on the maps $\mathcal{P} \otimes _\mathcal {A} \mathcal{N} \to \mathcal{M} \otimes _\mathcal {A} \mathcal{N}$ as a complex of $\mathcal{O}$-modules we conclude. $\square$

Lemma 24.28.7. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{A}$, $\mathcal{A}'$, $\mathcal{A}''$ be differential graded $\mathcal{O}$-algebras. Let $\mathcal{N}$ and $\mathcal{N}'$ be a differential graded $(\mathcal{A}, \mathcal{A}')$-bimodule and $(\mathcal{A}', \mathcal{A}'')$-bimodule. Assume that the canonical map

\[ \mathcal{N} \otimes _{\mathcal{A}'}^\mathbf {L} \mathcal{N}' \longrightarrow \mathcal{N} \otimes _{\mathcal{A}'} \mathcal{N}' \]

in $D(\mathcal{A}'', \text{d})$ is a quasi-isomorphism. Then we have

\[ (\mathcal{M} \otimes _\mathcal {A}^\mathbf {L} \mathcal{N}) \otimes _{\mathcal{A}'}^\mathbf {L} \mathcal{N}' = \mathcal{M} \otimes _\mathcal {A}^\mathbf {L} (\mathcal{N} \otimes _{\mathcal{A}'} \mathcal{N}') \]

as functors $D(\mathcal{A}, \text{d}) \to D(\mathcal{A}'', \text{d})$.

Proof. Choose a good differential graded $\mathcal{A}$-module $\mathcal{P}$ and a quasi-isomorphism $\mathcal{P} \to \mathcal{M}$, see Lemma 24.23.7. Then

\[ \mathcal{M} \otimes _\mathcal {A}^\mathbf {L} (\mathcal{N} \otimes _{\mathcal{A}'} \mathcal{N}') = \mathcal{P} \otimes _\mathcal {A} \mathcal{N} \otimes _{\mathcal{A}'} \mathcal{N}' \]

and we have

\[ (\mathcal{M} \otimes _\mathcal {A}^\mathbf {L} \mathcal{N}) \otimes _{\mathcal{A}'}^\mathbf {L} \mathcal{N}' = (\mathcal{P} \otimes _\mathcal {A} \mathcal{N}) \otimes _{\mathcal{A}'}^\mathbf {L} \mathcal{N}' \]

Thus we have to show the canonical map

\[ (\mathcal{P} \otimes _\mathcal {A} \mathcal{N}) \otimes _{\mathcal{A}'}^\mathbf {L} \mathcal{N}' \longrightarrow \mathcal{P} \otimes _\mathcal {A} \mathcal{N} \otimes _{\mathcal{A}'} \mathcal{N}' \]

is a quasi-isomorphism. Choose a quasi-isomorphism $\mathcal{Q} \to \mathcal{N}'$ where $\mathcal{Q}$ is a good left differential graded $\mathcal{A}'$-module (Lemma 24.23.7). By Lemma 24.28.6 the map above as a map in the derived category of $\mathcal{O}$-modules is the map

\[ \mathcal{P} \otimes _\mathcal {A} \mathcal{N} \otimes _{\mathcal{A}'} \mathcal{Q} \longrightarrow \mathcal{P} \otimes _\mathcal {A} \mathcal{N} \otimes _{\mathcal{A}'} \mathcal{N}' \]

Since $\mathcal{N} \otimes _{\mathcal{A}'} \mathcal{Q} \to \mathcal{N} \otimes _{\mathcal{A}'} \mathcal{N}'$ is a quasi-isomorphism by assumption and $\mathcal{P}$ is a good differential graded $\mathcal{A}$-module this map is an quasi-isomorphism by Lemma 24.28.5 (the left and right hand side compute $\mathcal{P} \otimes _\mathcal {A}^\mathbf {L} (\mathcal{N} \otimes _{\mathcal{A}'} \mathcal{Q})$ and $\mathcal{P} \otimes _\mathcal {A}^\mathbf {L} (\mathcal{N} \otimes _{\mathcal{A}'} \mathcal{N}')$ or you can just repeat the argument in the proof of the lemma). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FTD. Beware of the difference between the letter 'O' and the digit '0'.