Remark 50.4.3. Let f : X \to S be a morphism of schemes. Let \xi \in H_{dR}^ n(X/S). According to the discussion Differential Graded Sheaves, Section 24.32 there exists a canonical morphism
in D(f^{-1}\mathcal{O}_ S) uniquely characterized by (1) and (2) of the following list of properties:
\xi ' can be lifted to a map in the derived category of right differential graded \Omega ^\bullet _{X/S}-modules, and
\xi '(1) = \xi in H^0(X, \Omega ^\bullet _{X/S}[n]) = H^ n_{dR}(X/S),
the map \xi ' sends \eta \in H^ m_{dR}(X/S) to \xi \cup \eta in H^{n + m}_{dR}(X/S),
the construction of \xi ' commutes with restrictions to opens: for U \subset X open the restriction \xi '|_ U is the map corresponding to the image \xi |_ U \in H^ n_{dR}(U/S),
for any diagram as in Remark 50.4.2 we obtain a commutative diagram
\xymatrix{ Rf_*\Omega ^\bullet _{X/S} \otimes _{q^{-1}\mathcal{O}_ T}^\mathbf {L} Rf_*\Omega ^\bullet _{X/S} \ar[d]_{\xi ' \otimes \text{id}} \ar[r]_-\mu & Rf_*\Omega ^\bullet _{X/S} \ar[d]^{\xi '} \\ Rf_*\Omega ^\bullet _{X/S}[n] \otimes _{q^{-1}\mathcal{O}_ T}^\mathbf {L} Rf_*\Omega ^\bullet _{X/S} \ar[r]^-\mu & Rf_*\Omega ^\bullet _{X/S}[n] }in D(Y, q^{-1}\mathcal{O}_ T).
Comments (0)