The Stacks project

24.32 Miscellany

Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ be a morphism of ringed topoi. Let $\mathcal{A}$ be a sheaf of differential graded $\mathcal{O}$-algebras. Using the composition1

\[ \mathcal{A} \otimes _\mathcal {O}^\mathbf {L} \mathcal{A} \longrightarrow \mathcal{A} \otimes _\mathcal {O} \mathcal{A} \longrightarrow \mathcal{A} \]

and the relative cup product (see Cohomology on Sites, Remark 21.19.7 and Section 21.33) we obtain a multiplication2

\[ \mu : Rf_*\mathcal{A} \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*\mathcal{A} \longrightarrow Rf_*\mathcal{A} \]

in $D(\mathcal{O}')$. This multiplication is associative in the sense that the diagram

\[ \xymatrix{ Rf_*\mathcal{A} \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*\mathcal{A} \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*\mathcal{A} \ar[rr]_-{\mu \otimes 1} \ar[d]_{1 \otimes \mu } & & Rf_*\mathcal{A} \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*\mathcal{A} \ar[d]^\mu \\ Rf_*\mathcal{A} \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*\mathcal{A} \ar[rr]^-\mu & & Rf_*\mathcal{A} } \]

commutes in $D(\mathcal{O}')$; this follows from Cohomology on Sites, Lemma 21.33.2. In exactly the same way, given a right differential graded $\mathcal{A}$-module $\mathcal{M}$ we obtain a multiplication

\[ \mu _\mathcal {M} : Rf_*\mathcal{M} \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*\mathcal{A} \longrightarrow Rf_*\mathcal{M} \]

in $D(\mathcal{O}')$. This multiplication is compatible with $\mu $ above in the sense that the diagram

\[ \xymatrix{ Rf_*\mathcal{M} \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*\mathcal{A} \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*\mathcal{A} \ar[rr]_-{\mu _\mathcal {M} \otimes 1} \ar[d]_{1 \otimes \mu } & & Rf_*\mathcal{M} \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*\mathcal{A} \ar[d]^{\mu _\mathcal {M}} \\ Rf_*\mathcal{M} \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*\mathcal{A} \ar[rr]^-{\mu _\mathcal {M}} & & Rf_*\mathcal{M} } \]

commutes in $D(\mathcal{O}')$; again this follows from Cohomology on Sites, Lemma 21.33.2.

A particular example of the above is when one takes $f$ to be the morphism to the punctual topos $\mathop{\mathit{Sh}}\nolimits (pt)$. In that case $\mu $ is just the cup product map

\[ R\Gamma (\mathcal{C}, \mathcal{A}) \otimes _{\Gamma (\mathcal{C}, \mathcal{O})}^\mathbf {L} R\Gamma (\mathcal{C}, \mathcal{A}) \longrightarrow R\Gamma (\mathcal{C}, \mathcal{A}), \quad \eta \otimes \theta \mapsto \eta \cup \theta \]

and similarly $\mu _\mathcal {M}$ is the cup product map

\[ R\Gamma (\mathcal{C}, \mathcal{M}) \otimes _{\Gamma (\mathcal{C}, \mathcal{O})}^\mathbf {L} R\Gamma (\mathcal{C}, \mathcal{A}) \longrightarrow R\Gamma (\mathcal{C}, \mathcal{M}), \quad \eta \otimes \theta \mapsto \eta \cup \theta \]

In general, via the identifications

\[ R\Gamma (\mathcal{C}, \mathcal{A}) = R\Gamma (\mathcal{C}', Rf_*\mathcal{A}) \quad \text{and}\quad R\Gamma (\mathcal{C}, \mathcal{M}) = R\Gamma (\mathcal{C}', Rf_*\mathcal{M}) \]

of Cohomology on Sites, Remark 21.14.4 the map $\mu _\mathcal {M}$ induces the cup product on cohomology. To see this use Cohomology on Sites, Lemma 21.33.4 where the second morphism of topoi is the morphism from $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}')$ to the punctual topos as above.

If $\mathcal{M}_1 \to \mathcal{M}_2$ is a homomorphism of right differential graded $\mathcal{A}$-modules, then the diagram

\[ \xymatrix{ Rf_*\mathcal{M}_1 \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*\mathcal{A} \ar[rr]_-{\mu _{\mathcal{M}_1}} \ar[d] & & Rf_*\mathcal{M}_1 \ar[d] \\ Rf_*\mathcal{M}_2 \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*\mathcal{A} \ar[rr]^-{\mu _{\mathcal{M}_2}} & & Rf_*\mathcal{M}_2 } \]

commutes in $D(\mathcal{O}')$; this follows from the fact that the relative cup product is functorial. Suppose we have a short exact sequence

\[ 0 \to \mathcal{M}_1 \xrightarrow {a} \mathcal{M}_2 \to \mathcal{M}_3 \to 0 \]

of right differential graded $\mathcal{A}$-modules. Then we claim that the diagram

\[ \xymatrix{ Rf_*\mathcal{M}_3 \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*\mathcal{A} \ar[rr]_-{\mu _{\mathcal{M}_3}} \ar[d]_{Rf_*\delta \otimes \text{id}} & & Rf_*\mathcal{M}_3 \ar[d]^{Rf_*\delta } \\ Rf_*\mathcal{M}_1[1] \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*\mathcal{A} \ar[rr]^-{\mu _{\mathcal{M}_1[1]}} & & Rf_*\mathcal{M}_1[1] } \]

commutes in $D(\mathcal{O}')$ where $\delta : \mathcal{M}_3 \to \mathcal{M}_1[1]$ is the morphism of $D(\mathcal{O})$ coming from the given short exact sequence (see Derived Categories, Section 13.12). This is clear if our sequence is split as a sequence of graded right $\mathcal{A}$-modules, because in this case $\delta $ can be represented by a map of right $\mathcal{A}$-modules and the discussion above applies. In general we argue using the cone on $a$ and the diagram

\[ \xymatrix{ \mathcal{M}_1 \ar[r]_ a \ar[d] & \mathcal{M}_2 \ar[r]_ i \ar[d] & C(a) \ar[r]_{-p} \ar[d]^ q & \mathcal{M}_1[1] \ar[d] \\ \mathcal{M}_1 \ar[r] & \mathcal{M}_2 \ar[r] & \mathcal{M}_3 \ar[r]^\delta & \mathcal{M}_1[1] } \]

where the right square is commutative in $D(\mathcal{O})$ by the definition of $\delta $ in Derived Categories, Lemma 13.12.1. Now the cone $C(a)$ has the structure of a right differential graded $\mathcal{A}$-module such that $i$, $p$, $q$ are homomorphisms of right differential graded $\mathcal{A}$-modules, see Definition 24.22.2. Hence by the above we know that the corresponding diagrams commute for the morphisms $q$ and $-p$. Since $q$ is an isomorphism in $D(\mathcal{O})$ we conclude the same is true for $\delta $ as desired.

In the situation above given a right differential graded $\mathcal{A}$-module $\mathcal{M}$ let

\[ \xi \in H^ n(\mathcal{C}, \mathcal{M}) \]

In other words, $\xi $ is a degree $n$ cohomology class in the cohomology of $\mathcal{M}$ viewed as a complex of $\mathcal{O}$-modules. By Lemma 24.29.9 we can construct maps

\[ x : \mathcal{A} \rightarrow \mathcal{M}'[n] \quad \text{and}\quad s : \mathcal{M} \to \mathcal{M}' \]

of right differential graded $\mathcal{A}$-modules where $s$ is a quasi-isomorphism and such that $\xi $ is the image of $1 \in H^0(\mathcal{C}, \mathcal{A})$ via the morphism $s[n]^{-1} \circ x$ in the derived category $D(\mathcal{A}, \text{d})$ and a fortiori in the derived category $D(\mathcal{O})$. It follows that the corresponding map

\[ \xi ' = (s[n])^{-1} \circ x : \mathcal{A} \longrightarrow \mathcal{M}[n] \]

in $D(\mathcal{O})$ is uniquely characterized by the following two properties

  1. $\xi '$ can be lifted to a morphism in $D(\mathcal{A}, \text{d})$, and

  2. $\xi = \xi '(1)$ in $H^0(\mathcal{C}, \mathcal{M}[n]) = H^ n(\mathcal{C}, \mathcal{M})$.

Using the compatibilities of $x$ and $s$ with the relative cup product discussed above it follows that for every3 morphism of ringed topoi $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ the derived pushforward

\[ Rf_*\xi ' : Rf_*\mathcal{A} \longrightarrow Rf_*\mathcal{M}[n] \]

of $\xi '$ is compatible with the maps $\mu $ and $\mu _{\mathcal{M}[n]}$ constructed above in the sense that the diagram

\[ \xymatrix{ Rf_*\mathcal{A} \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*\mathcal{A} \ar[rr]_-\mu \ar[d]_{Rf_*\xi ' \otimes \text{id}} & & Rf_*\mathcal{A} \ar[d]^{Rf_*\xi '} \\ Rf_*\mathcal{M}[n] \otimes _{\mathcal{O}'}^\mathbf {L} Rf_*\mathcal{A} \ar[rr]^-{\mu _{\mathcal{M}[n]}} & & Rf_*\mathcal{M}[n] } \]

commutes in $D(\mathcal{O}')$. Using this compatibility for the map to the punctual topos, we see in particular that

\[ \xymatrix{ R\Gamma (\mathcal{C}, \mathcal{A}) \otimes _{\Gamma (\mathcal{C}, \mathcal{O})}^\mathbf {L} R\Gamma (\mathcal{C}, \mathcal{A}) \ar[d]_{\xi ' \otimes \text{id}} \ar[r] & R\Gamma (\mathcal{C}, \mathcal{A}) \ar[d]^{\xi '} \\ R\Gamma (\mathcal{C}, \mathcal{M}[n]) \otimes _{\Gamma (\mathcal{C}, \mathcal{O})}^\mathbf {L} R\Gamma (\mathcal{C}, \mathcal{A}) \ar[r] & R\Gamma (\mathcal{C}, \mathcal{M}[n]) } \]

commutes. Combined with $\xi '(1) = \xi $ this implies that the induced map on cohomology

\[ \xi ' : R\Gamma (\mathcal{C}, \mathcal{A}) \to R\Gamma (\mathcal{C}, \mathcal{M}[n]), \quad \eta \mapsto \xi \cup \eta \]

is given by left cup product by $\xi $ as indicated.

[1] It would be more precise to write $F(\mathcal{A}) \otimes _\mathcal {O}^\mathbf {L} F(\mathcal{A}) \to F(\mathcal{A} \otimes _\mathcal {O} \mathcal{A}) \to F(\mathcal{A})$ were $F$ denotes the forgetful functor to complexes of $\mathcal{O}$-modules. Also, note that $\mathcal{A} \otimes _\mathcal {O} \mathcal{A}$ indicates the tensor product of Section 24.15 so that $F(\mathcal{A} \otimes _\mathcal {O} \mathcal{A}) = \text{Tot}(F(\mathcal{A}) \otimes _\mathcal {O} F(\mathcal{A}))$. The first arrow of the sequence is the canonical map from the derived tensor product of two complexes of $\mathcal{O}$-modules to the usual tensor product of complexes of $\mathcal{O}$-modules.
[2] Here and below $Rf_* : D(\mathcal{O}) \to D(\mathcal{O}')$ is the derived functor studied in Cohomology on Sites, Section 21.19 ff.
[3] For example the identity morphism.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FU3. Beware of the difference between the letter 'O' and the digit '0'.